

Meliadine Extension

Air Quality Modelling Study

December 2021 Project No.: 0602390-3

Signature Page

December 2021

Meliadine Extension

Air Quality Modelling Study

Original signed

Trevor Newton, M.Sc. Senior Consultant

Original signed

Andres Soux, M.Sc. Atmospheric Discipline Leader

ERM Consultants Canada Ltd.

#1000 – 1100 Melville Street Vancouver, BC Canada V6E 4A6

T: +1 604 689 9460 F: +1 604 687 4277

© Copyright 2021 by ERM Worldwide Group Ltd and/or its affiliates ("ERM"). All rights reserved. No part of this work may be reproduced or transmitted in any form, or by any means, without the prior written permission of ERM.

EXECUTIVE SUMMARY

Agnico Eagle Mines (Agnico Eagle) operates the Meliadine Gold Mine (the Meliadine Mine), located approximately 25 kilometres (km) north of Rankin Inlet, and 80 km southwest of Chesterfield Inlet in the Kivalliq Region of Nunavut.

The Meliadine Mine received Project Certificate No. 006 from the Nunavut Impact Review Board (NIRB) in 2015. This included the approval of five deposits at Meliadine Mine, specifically Tiriganiaq, F Zone, Wesmeg, Pump, and Discovery. To date, a portion of the NIRB-approved footprint has been constructed.

Agnico Eagle is proposing to extend the existing mine and will be seeking an amendment to Project Certificate No. 006 for the Meliadine Extension (the Project). The Meliadine Extension involves new underground mining of the Tiriganiaq deposit (Tiriganiaq-Wolf), F Zone, Pump, and Discovery and open pit areas (Pump, F Zone and Discovery deposits), and would extend the life of mine (LOM) by 11 years and mine closure would move from 2032 to 2043. An air quality modelling study (AQMS) was conducted to inform the assessment of potential air quality effects for the proposed Project.

The AQMS used the CALPUFF air dispersion model (version 7.2.1) to predict the resulting ambient air quality due to emissions associated with Scenarios 1, 2 and 3 (no wind farm, 50% of power provided by wind farm, and 75% of power provided by wind farm).

These model scenarios are different from those in the modelling for the 2014 Final Environmental Impact Statement (FEIS). For the 2014 FEIS, there were six scenarios, where each deposit combined with Tiriganiaq was assessed separately. In the current modelling, mining is assumed to happen in three surface pits and five underground areas because the three scenarios are all based on the worst-case year (2030).

The air contaminants modelled were nitrogen oxides (NO_x) and sulphur dioxide (SO₂). Contaminants were compared against relevant ambient air quality standards, objectives, and guidelines (SOGs) for Canada, which are more stringent and more recent than those for Nunavut, as shown below in the appropriate section of the report.

The CALPUFF model used Canadian Digital Elevation Model data (Government of Canada 2021) obtained in a gridded format at 20 m horizontal resolution. CALMET used 30 m resolution land use data from the Landsat satellite. The meteorological data inputs consisted of Pennsylvania State University/ National Center for Atmospheric Research Mesoscale Model version 5 (MM5) model output files.

The emissions inventory was built using a number of information sources, calculations and assumptions. The primary source of information about air emissions was Agnico Eagle Operations and Permitting groups. At the time of preparing the emissions inventory, the most up-to-date information as of August 2021 was used.

Where input data uncertainties were identified, the air quality modelling incorporates conservative assumptions that are based on regulatory guidance. The use of conservative assumptions can lead to conservative model predictions and therefore the results of the model study are interpreted with the understanding that the predicted effects are likely overestimated.

The predicted ambient air quality results are compared against relevant SOGs for both ambient air quality contaminants. The results found that concentrations of nitrogen dioxide (NO₂) and SO₂ are not predicted to exceed the relevant thresholds for all three modelled scenarios.

CONTENTS

EXE	CUTIV	E SUMMA	ARY	I
	RONYM		BBREVIATIONS	v
1.	INTR	ODUCTIC	DN	1-1
	1.1	Project	Background	1-1
	1.2	Objectiv	/es	1-1
	1.3	Modellir	ng Limitations and Uncertainty	1-1
2.	MOD	ELLING S	STUDY SCOPE	2-1
	2.1	Approa	ch	2-1
	2.2	Modellir	ng Scenarios	2-1
	2.3	Spatial	Boundaries	2-1
	2.4	Tempor	al Boundaries	2-3
	2.5	Air Con	taminants	2-3
3.	AIR (QUALITY	STANDARDS, OBJECTIVES, AND GUIDELINES	3-1
4.	MOD		METHODOLOGY	4-1
	4.1	Existing	a Ambient Air Quality	4-1
	4.2	Model S	Selection	4-1
	4.3	Model C	Configuration	4-1
	4.4	Model G	Grids	4-2
		4.4.1	Meteorological Grid	4-2
		4.4.2	Computational Grid	4-2
		4.4.3	Sampling Grid	4-2
	4.5	Model D	Domains	4-2
		4.5.1	Spatial Domains	4-2
		4.5.2	Temporal Domains	4-2
	4.6	Model F	Receptors	4-4
		4.6.1	Gridded Receptors	4-4
		4.6.2	Discrete Sensitive Receptors	4-4
	4.7	Model I	nput Data	4-4
		4.7.1	Terrain Elevation Data	4-4
		4.7.2	Land Use Data	4-5
		4.7.3	Meteorological Data	
		4.7.4	CALMET QA/QC	
		4.7.5	Existing Ambient Air Quality	
		4.7.6	Emission Sources	
		4.7.7	Model Parameters	
		4.7.8	Nitrogen Oxides and Nitrogen Dioxide	4-5

5.	EMISS	IONS INVI	ENTORY		5-1
	5.1	Emissions	Inventory Sce	enarios	5-1
	5.2	Common A	Assumptions.		5-2
	5.3	Emission S	Scaling Factor	S	5-2
	5.4	Emission S	Sources		5-2
		5.4.1 Point Sources			5-3
			5.4.1.1	Underground Mobile Emissions	5-3
			5.4.1.2	Underground Blasting Emissions	5-3
		5.4.2	Volume Sources		5-4
		5.4.3	Road Source	¹ S	5-4
			5.4.3.1	On-road Equipment Emission Factors	5-4
			5.4.3.2	Non-road Equipment Emission Factors	5-5
			5.4.3.3	Tailpipe Emissions	5-5
6.	MODE		SULTS		6-1
	6.1	Scenario 1	l		6-1
	6.2	Scenario 2	2		6-1
	6.3	Scenario 3	3		6-1
7.	SUMM	ARY			7-1
8.	REFER	ENCES			8-1
APPE	ENDIX A	DISC	CRETE SEN	SITIVE RECEPTOR LOCATIONS AND AMBIENT AIR Q	

APPENDIX A	DISCRETE SENSITIVE RECEPTOR LOCATIONS AND AMBIENT AIR QUALITY PREDICTIONS
APPENDIX B	CALPUFF PARAMETERS
APPENDIX C	AIR EMISSIONS INVENTORY METHODOLOGY
APPENDIX D	AIR EMISSIONS INVENTORY
APPENDIX E	BUILDINGS INCLUDED IN BUILDING DOWNWASH ASSESSMENT

List of Tables

Table 2.5-1: Description of Air Contaminants Used as Ambient Air Quality Indicators	2-3
Table 3-1: Ambient Air Quality Standards, Objectives, and Guidelines for NO2 and SO2	3-1
Table 5.1-1: Emissions Summary, Scenario 1	5-1
Table 5.1-2: Emissions Summary, Scenario 2	5-1
Table 5.1-3: Emissions Summary, Scenario 3	5-2
Table 6.1-1: Maximum Predicted NO ₂ and SO ₂ Concentrations	6-2

List of Figures

Figure 1.1-1: Project Location	.1-2
Figure 1.1-2: Site Study Area and Meliadine Mine Infrastructure	.1-3
Figure 2.3-1: Spatial Boundaries for the Meliadine Extension Air Quality Modelling Study	.2-2
Figure 4.5-1: CALPUFF Model Spatial Domain and Receptor Locations	.4-3
Figure 4.7-1: Relationship of NO ₂ /NO _x Ratio to NO _x Concentration (µg/m ³), BC MOE ARM Rural Curve	.4-6
Figure 6-1: 1-hour and Annual NO ₂ and SO ₂ Predicted Concentrations, Scenarios 1, 2, and 3	6-3

ACRONYMS AND ABBREVIATIONS

AQMS	Air quality modelling study
ARM	Ambient Ratio Method (for converting predicted NO_x concentrations to NO_2)
AWAR	All-Weather Access Road
BC AQMG	British Columbia Air Quality Dispersion Modelling Guideline
BC MOE	British Columbia Ministry of Environment (the former name of ENV, see below)
BPIP-PRIME	Building Profile Input Program for the PRIME algorithm (building downwash software)
CAAQS	Canadian Ambient Air Quality Standards
CDEM	Canadian Digital Elevation Model
EF	Emission Factor
ENV	Ministry of Environment and Climate Change Strategy
FEIS	Final Environmental Impact Statement
g/s	Grams per second
g/s/m	Grams per second per linear metre (for emissions from a road source)
g/VKT	Grams per vehicle kilometre travelled
km	Kilometre
LOM	Life Of Mine
Meliadine Extension	Meliadine Mine Extension Project
Meliadine Mine	Meliadine Gold Mine
MM5	Pennsylvania State University/National Center for Atmospheric Research Mesoscale Model version 5 (a meteorological model)
MOVES2014b	US EPA Motor Vehicle Emission Simulator version 2014b
NIRB	Nunavut Impact Review Board
NO	Nitrogen oxide
NO ₂	Nitrogen dioxide
NO _x	Nitrogen oxides
NPC	Nunavut Planning Commission
QA/QC	Quality assurance / quality control
SO ₂	Sulphur dioxide
SOGs	Air quality Standards, Objectives and Guidelines
SRTM	Shuttle Radar Topography Mission (a source of digital elevation data)
VEC	Valued ecosystem component
VSEC	Valued socio-economic component

1. INTRODUCTION

1.1 **Project Background**

Agnico Eagle operates the Meliadine Gold Mine (the Meliadine Mine), located approximately 25 kilometres (km) north of Rankin Inlet, and 80 km southwest of Chesterfield Inlet in the Kivalliq Region of Nunavut (Figure 1.1-1).

The Meliadine Mine received Project Certificate No. 006 from the Nunavut Impact Review Board (NIRB) on February 26, 2015. This included the approval of five deposits at Meliadine Mine, specifically Tiriganiaq, F Zone, Wesmeg, Pump, and Discovery. To date, a portion of the NIRB-approved footprint has been constructed.

Agnico Eagle is proposing to extend the mine and will be seeking an amendment to Project Certificate No. 006 for the Meliadine Extension (the Project). The Meliadine Extension involves new underground mining of the Tiriganiaq deposit (Tiriganiaq-Wolf), F Zone, Pump, and Discovery and open pit areas (Pump, F Zone and Discovery deposits), and would extend the life of mine (LOM) by 11 years and mine closure would move from 2032 to 2043. Additional personnel (i.e., 205 employees) would be required to support the Meliadine Extension and the camp capacity would be increased accordingly. In addition, Agnico Eagle is assessing the benefits of installing a wind farm that, depending on its size, could provide 25% to 75% of the mine's required power.

This report presents the results of air quality modelling to support the assessment of potential air quality effects in the Final Environmental Impact Statement (FEIS) Addendum for the Meliadine Extension completed by Agnico Eagle. This air quality modelling does not represent the current mine configuration; the Meliadine Extension represents the proposed future configuration of the mine. The Site Study Area (the project footprint and mine infrastructure, including the area covered by the Meliadine Extension) used for the air quality modelling study (AQMS), is shown in Figure 1.1-2.

1.2 Objectives

The objectives of this report are to:

- summarize existing ambient air quality conditions in the Meliadine Extension area;
- describe the methodology used for the AQMS;
- identify the sources of nitrogen oxides (NOx) and sulphur dioxide (SO2) associated with the Meliadine Extension and present an emissions inventory;
- predict the change in ambient air quality based on air dispersion modelling; and
- compare the results to relevant ambient air quality standards, objectives and guidelines (SOGs).

1.3 Modelling Limitations and Uncertainty

There is inherent uncertainty associated with scientific modelling. Air dispersion models can predict atmospheric concentrations to a reasonable degree of accuracy but the accuracy is highly dependent on the overall modelling approach and the accuracy of the model inputs, which include model parameters, meteorological data, terrain data, land use data, and air emissions inventory data.

Where input data uncertainties were identified, the air quality modelling incorporates conservative assumptions that are based on regulatory guidance, and professional judgement and experience. Assumptions used in the AQMS to account for uncertainties are described in the report. The use of conservative assumptions can lead to conservative model predictions and therefore the results of the AQMS are interpreted with the understanding that the predicted effects are likely overestimated.

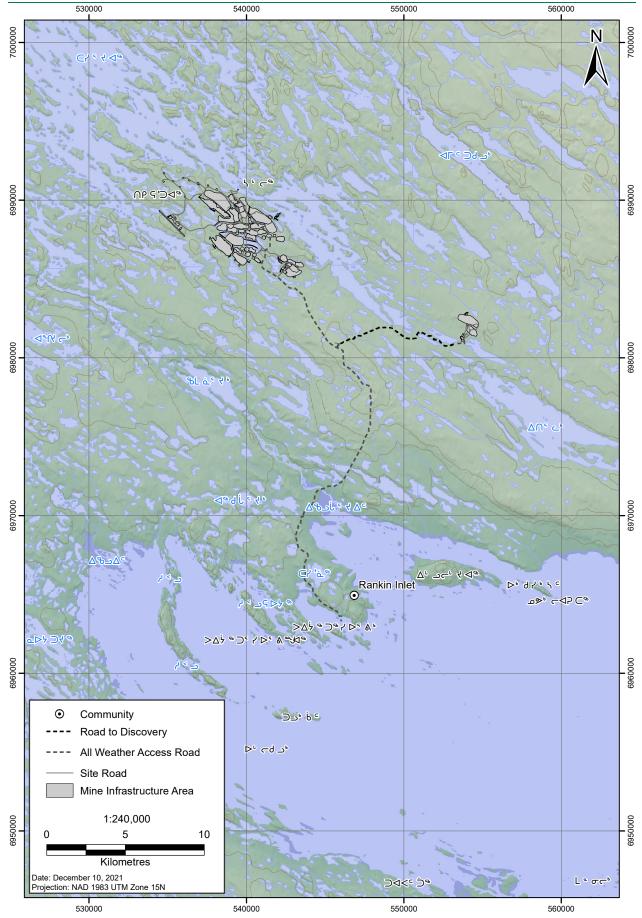
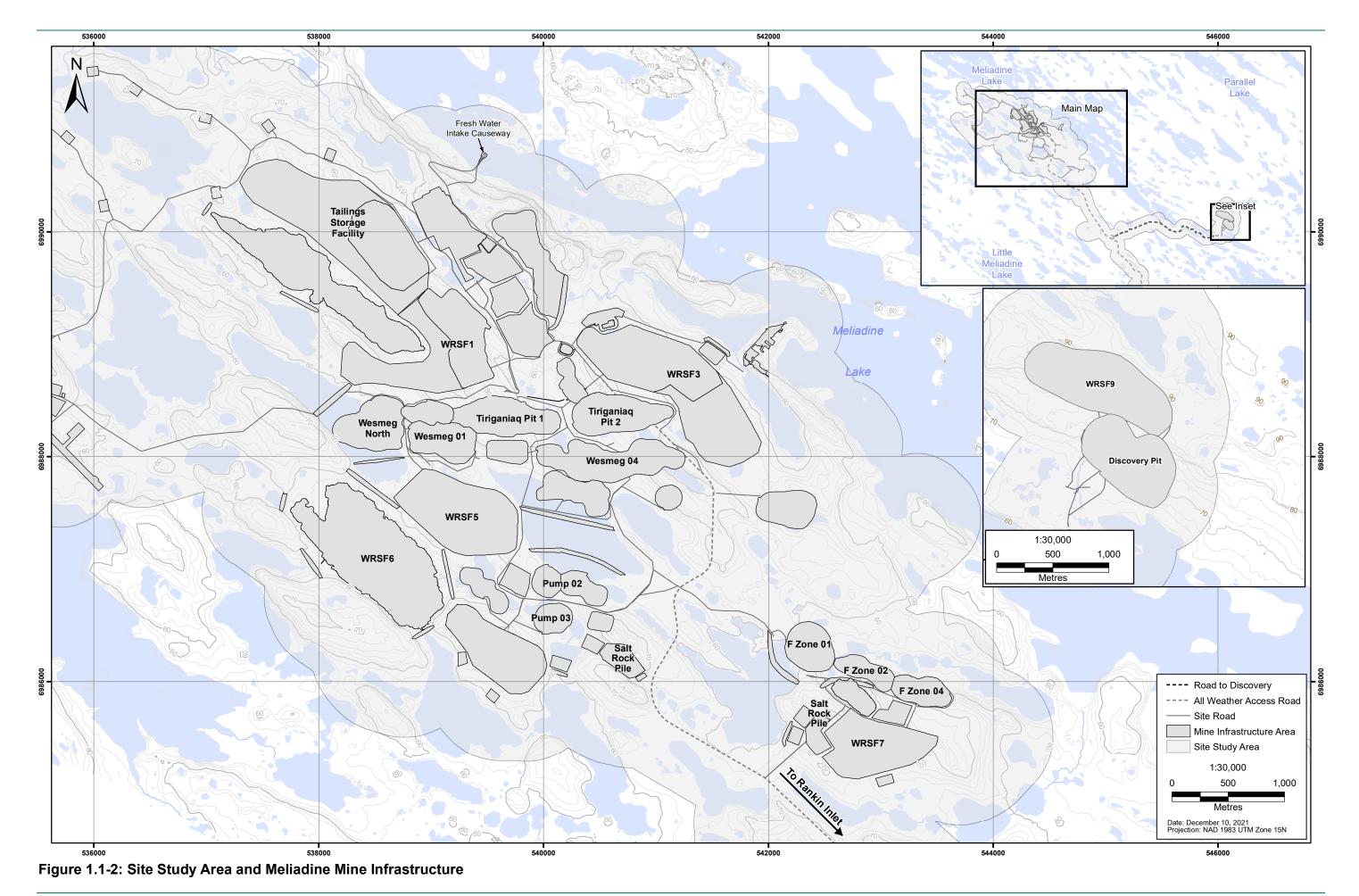



Figure 1.1-1: Meliadine Extension - Project Location

www.erm.com Project No.: 0602390-3 Client: AGNICO EAGLE MINES LIMITED

2. MODELLING STUDY SCOPE

2.1 Approach

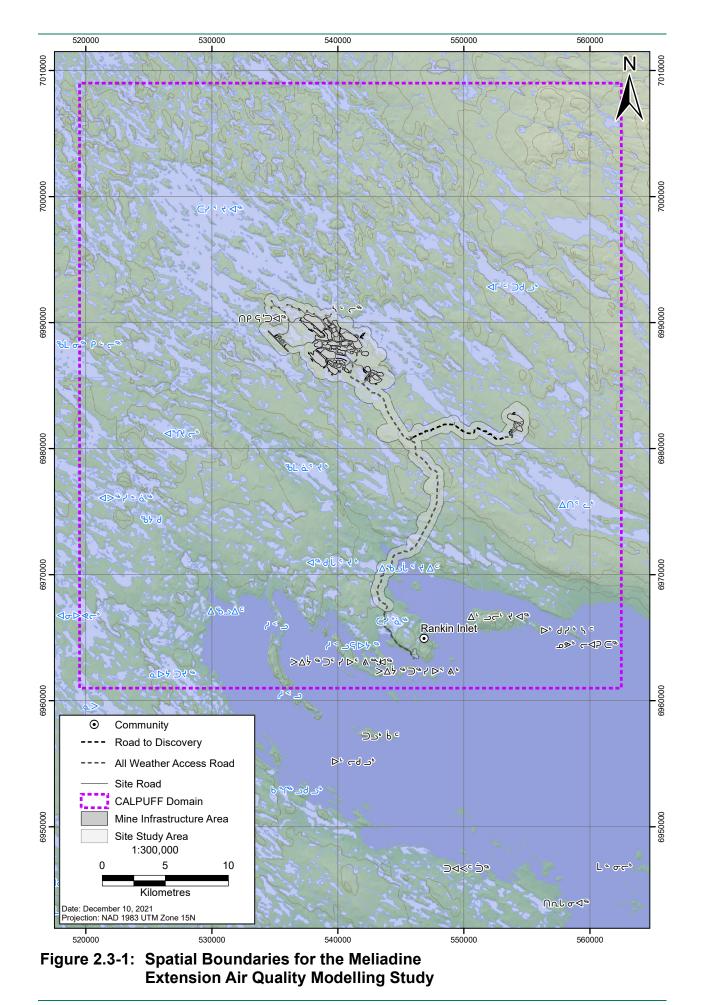
Standard air dispersion modelling techniques were applied to predict the potential air quality effects associated with the Meliadine Extension. Air dispersion modelling considers the interaction of existing and future emission sources and takes into account meteorological conditions, terrain elevation, and land use.

The AQMS follows the BC Ministry of Environment and Climate Change Strategy (ENV)'s BC Air Quality Dispersion Modelling Guideline (BC MOE 2015) because the Government of Nunavut has not issued a Guideline for that purpose. Settings and inputs that were used in the modelling conducted for the Meliadine Mine FEIS (Agnico Eagle 2014) are used in the AQMS, where possible and reasonable.

2.2 Modelling Scenarios

The following assessment cases were considered and modelled:

- Scenario 1 assumes that no power is provided by the proposed wind farm; four site generators are running continuously.
- Scenario 2 assumes that 50% of power is provided by the wind farm; two site generators are running continuously.
- Scenario 3 assumes that 75% of power is provided by the wind farm; one site generator is running continuously.


These model scenarios are different from those in the modelling for the 2014 FEIS, which did not consider the potential addition of a wind farm. For the 2014 FEIS, there were six scenarios, where each deposit combined with Tiriganiaq was assessed separately. In the current modelling, mining is assumed to happen in three surface pits and five underground areas because the three scenarios are all based on the worst-case year (2030).

2.3 Spatial Boundaries

Spatial boundaries of the AQMS were chosen in order to identify maximum air quality impacts due to the different scenarios as well as the spatial distribution of predicted air quality. The boundaries were also sized such that ambient air contaminant levels are anticipated to approach baseline air contaminant levels within the boundaries.

The CALPUFF modelling domain (Figure 2.3-1) is the area in which potential effects from the Project on air quality are most likely to occur. The CALPUFF domain is a rectangle 43 km east-west by 48 km north-south, encompassing the Meliadine Mine and the hamlet of Rankin Inlet. This domain is larger than the CALPUFF domain (35 km by 35 km) in the 2014 FEIS modelling (Agnico Eagle 2014). A larger CALPUFF domain was used for the Meliadine Extension modelling in order to expand the area in which predicted concentrations are available for the purposes of assessing potential impacts.

Additional information about the spatial boundaries is included in Section 4.5.

www.erm.com

2.4 Temporal Boundaries

The modelling used available LOM data from 2030. The AQMS temporal boundaries were chosen to model the year with the maximum total amount of material (overburden, tailings, waste rock, salt rock, and ore combined) moved, and therefore the highest anticipated total air emission rates during the projected LOM plan (as of August 2021). Based on the projected LOM plan, 2030 was found to have the highest total amount of material moved, and thus was assumed to have the highest annual air emissions. The resulting ambient concentrations of modelled contaminants during 2030 is expected to be higher than during the closure, post-closure and care and maintenance periods. Therefore, only the 2030 operation period was modelled in the AQMS to model the highest emission rates.

For the Meliadine Extension, ambient air quality was modelled using five full years of meteorological data in order to account for seasonal meteorological conditions, seasonal air emissions, and to assess the required averaging periods to compare against relevant ambient air quality SOGs. The modelled meteorological data files used in the AQMS were the same as those in the 2014 FEIS modelling (Agnico Eagle 2014).

Additional information about the temporal boundaries is included in Section 4.5.

2.5 Air Contaminants

The AQMS predicted results for the following air contaminants:

- nitrogen oxides (NO_x);
- nitrogen dioxide (NO₂) resulting from emissions of NO_x; and
- sulphur dioxide (SO₂).

Ambient air quality contaminants are described in Table 2.5-1.

Table 2.5-1: Description of Air Contaminants Used as Ambient Air Quality Indicators

Air Contaminant Chemical Species	Description
NOx	NO_x gas is a product of fuel combustion and primarily consists of nitrogen monoxide (NO) and NO ₂ . The gases are emitted with exhaust from combustion engines, power generation, and products from blasting operations. NO can be converted to NO_2 in the atmosphere. NO_x emissions can also be converted to nitric acid in the atmosphere, which contributes to acid deposition. NO_2 can be harmful to humans at high concentrations.
SO ₂	Fossil fuels contain a small amount of organic sulphur compounds. During fuel combustion, the sulphur is oxidized and emitted as SO ₂ gas with the combustion exhaust. In the atmosphere, SO ₂ can further oxidize to sulphate particles, which contribute to acid deposition. SO ₂ can be harmful to humans at high concentrations.

3. AIR QUALITY STANDARDS, OBJECTIVES, AND GUIDELINES

The AQMS incorporates the Nunavut Ambient Air Quality Standards (Government of Nunavut 2011) and SOGs from the federal government (Government of Canada 2017a and 2017b).

The ambient air quality SOGs for NO₂ and SO₂ are summarized in Table 3-1. The model results were compared to the 2025 Canadian Ambient Air Quality Standards (CAAQS) because they are more stringent and more recent than the Nunavut standards.

Contaminant	Averaging	Objectives/Standards (µg/m ³)		
	Period	Federal CAAQS ^(a,b)		Nunavut ^(c)
		2020	2025	
NO ₂	1-hour	113 ^(d)	79 ^(d)	400
	24-hour	N/A	N/A	200
	Annual	32 ^(e)	22.5 ^(e)	60
SO ₂	1-hour	183 ^(f)	170 ^(f)	450
	24-hour	N/A	N/A	150
	Annual	13 ^(g)	10.5 ^(g)	30

Table 3-1: Ambient Air Quality Standards, Objectives, and Guidelines for NO₂ and SO₂

Sources: ^(a) Government of Canada 2017a, ^(b) Government of Canada 2017b, and ^(c) Government of Nunavut 2011.

Notes:

^(d) Canadian Ambient Air Quality Standard is 113 μg/m³ from December 2017 through December 2024 and 79 μg/m³ as of January 2025 (Government of Canada 2017a); compliance based on a three-year average of the annual 98th percentile of the daily 1-hour maximum concentration (D1HM).

^(e) Canadian Ambient Air Quality Standard is 32 μg/m³ from December 2017 through December 2024 and 22.5 μg/m³ as of January 2025 (Government of Canada 2017a); compliance based on a one-calendar-year average of all the 1-hour average concentrations.

^(f) Canadian Ambient Air Quality Standard is 183 μg/m³ from October 2017 through December 2024 and 170 μg/m³ as of January 2025 (Government of Canada 2017b); compliance based on a three-year average of the annual 99th percentile of the daily-maximum 1-hour average concentrations.

^(g) Canadian Ambient Air Quality Standard is 13 μg/m³ from October 2017 through December 2024 and 10.5 μg/m³ as of January 2025 (Government of Canada 2017b); compliance based on a one-calendar-year average of all the 1-hour average concentrations.

4. MODELLING METHODOLOGY

4.1 Existing Ambient Air Quality

Existing ambient air quality represents the ambient air quality conditions in the area of the Meliadine Mine due to non-mine sources. Background concentrations were not added to the modelled concentrations. Due to the remote nature of the site it was assumed that background concentrations of NO_x and SO_2 were negligible.

4.2 Model Selection

The AQMS was completed using the CALPUFF air dispersion model (version 7; Exponent 2021) to simulate the resulting ambient air quality from Meliadine Extension emission sources. The CALPUFF model was chosen for the following reasons:

- It is a non-steady state Lagrangian puff model suitable for local scale (within 10 km of emission source), regional scale (10 to 50 km from emission source) and long-range transport (50 to 200 km from emission source) applications;
- It is capable of modelling the interaction between source emissions where those emissions are transported for more than an hour, by keeping track of emissions on a time and space varying basis;
- It has the capability of modelling road sources with an algorithm specifically designed to account for the shape and elevation of each segment of the road;
- It can model meteorologically complex situations such as land and sea breezes, complex terrain effects, and recirculation; and
- It was used and accepted as AQ modelling for the 2014 FEIS for the Meliadine Mine.

The latest non-beta version of the CALPUFF modelling system (version 7.2.1, Level 150618) was used because it aligns with the recommendations from ENV (BC MOE 2015).

There are many modular components that make up the CALPUFF modelling system (e.g., pre-processors, core models, post-processors, utilities), each with their own name and version number. For simplicity in this report, the overall CALPUFF modelling system will simply be referred to as "CALPUFF", rather than referring to individual modules. The exception is the CALMET pre-processor (it prepares meteorological inputs for CALPUFF) which is explicitly referenced.

4.3 Model Configuration

The CALPUFF model uses a variety of input data and parameters, including terrain elevation, land use and meteorological datasets specific to the Meliadine Mine area. The model used air emission inventories specific to mine operations and the Meliadine Extension operation activities. These emission inventories were calculated using the information available at the time (August 2021), along with a variety of different published emission factors (see Section 5).

Emissions originate from three different types of modelled sources: point (with a defined stack or vent), volume (where emissions occur across an area, at heights above ground level, such as blasting in surface pits), and road (emissions due to vehicle exhaust); source characterizations are described further in Section 5. To provide a better understanding of the major contributors to predicted impacts, each source was modelled individually and a post-processor was used that reads and combines the binary output files produced by CALPUFF to determine overall total modelled concentration for the various contaminants and averaging times. The post-processor identifies maximum concentrations and identifies the specific source contributions to the total. Each source was modelled with base (1-hour) emission rates for each

contaminant, and the post-processor was used to scale the model output as necessary for longer averaging periods (i.e., 24-hour, annual). This approach provides an efficient and flexible methodology for processing CALPUFF output, and has been tested against the CALPUFF post processors to ensure accuracy.

4.4 Model Grids

4.4.1 Meteorological Grid

The meteorological grid is used to define the three-dimensional spatial area where meteorological conditions are modelled. The horizontal meteorological grid used for the AQMS was 51 km (north to south) by 46 km (east to west) and was centred approximately on the middle of the Meliadine Mine. The horizontal dimensional meteorological grid spacing was 0.5 km. There were 10 vertical layers above the surface used for the meteorological grid. The bottom heights of each cell layer were: 0, 20, 50, 100, 200, 400, 800, 1,200, 1,600 and 2,200 m, with the last cell having a top height of 3,000 m.

The AQMS used the CALMET output files (i.e. meteorological data) from the 2014 FEIS AQ modelling for the Meliadine Mine, for which the grid size, spacing and vertical layers had been chosen to be appropriate for the terrain characteristics and meteorological conditions of the Meliadine Mine regional area.

4.4.2 Computational Grid

The computational grid is used to define the three dimensional spatial area where simulated puffs are released and advected by the CALPUFF model. The AQMS used a 43 km east-west by 48 km north-south rectangle, which is larger than the 35 km by 35 km computational grid that was used in the Meliadine Mine 2014 FEIS modelling.

4.4.3 Sampling Grid

The sampling grid is used to define the spatial area were receptors are placed for calculation of air contaminant concentrations. Both gridded and discrete sensitive receptors were used in the AQMS. Receptor spacing and development is discussed in Section 4.6.

4.5 Model Domains

4.5.1 Spatial Domains

The AQMS spatial domain (study area) was established based on the "zone of influence" beyond which potential air contaminant concentrations from the Meliadine Mine are expected to diminish to near background levels. The AQMS spatial domain and receptor locations are shown in Figure 4.5-1.

4.5.2 Temporal Domains

The temporal boundaries include modelling air emissions and ambient air quality during 2030. The current LOM plan states that 2030 is the year with a maximum total amount of material (overburden, tailings, waste rock, salt rock, and ore combined) being moved. Most of the point sources have fixed emission rates. Other main air emission sources at the Meliadine Mine (roads, pits, vent raises, and portals) will have higher emission rates with higher amounts of material moved.

Ambient air quality modelling predictions were not completed for the closure and post-closure periods. The air emissions during these phases in the LOM will be lower than the air emissions during the operation phase. The resulting ambient concentrations of NO_x and SO_2 are therefore expected to be lower during the closure and post-closure periods than during the operation period.

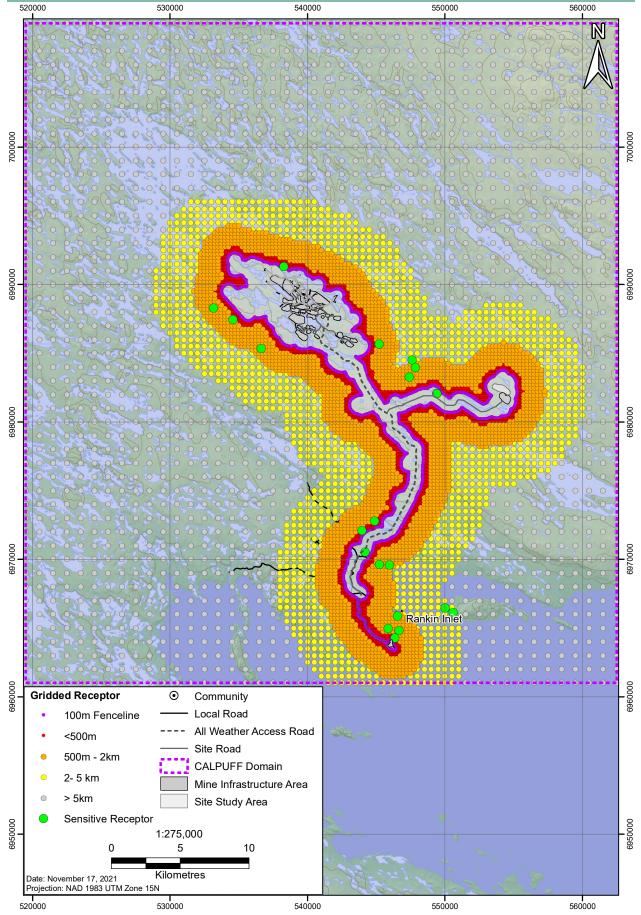


Figure 4.5-1: CALPUFF Model Spatial Domain and Receptor Locations

4.6 Model Receptors

In air dispersion modelling, concentrations of the modelled species are predicted at a set of locations (UTM points, each with an elevation above sea level). These locations are called receptors. The air quality model used a combination of gridded receptors and discrete sensitive receptors.

4.6.1 Gridded Receptors

Nested grids of receptors are often used in air dispersion modelling, with denser receptor grids closer to the emission sources and less dense grids farther away. The purpose of this approach is to better resolve the highest predicted concentrations, which tend to occur closer to the emission sources. Beyond a distance of 500 m from the Site Study Area, the gridded receptor spacing followed the specifications in the BC Air Quality Dispersion Modelling Guideline (BC AQMG, BC MOE 2015):

- 100 m spacing along the perimeter of the Site Study Area; (BC AQMG specifies 20 m spacing);
- 100 m spacing within 500 m of the Site Study Area; (BC AQMG specifies 50 m spacing);
- 250 m spacing within 2 km of the Site Study Area (follows BC AQMG);
- 500 m spacing within 5 km of the Site Study Area (follows BC AQMG); and
- 1,000 m spacing beyond 5 km of the Site Study Area (follows BC AQMG).

Because of the large size of the Site Study Area, which includes the road to the Discovery pit and the AWAR to Rankin Inlet, the 20 m and 50 m grids were adjusted to 100 m spacing. This resulted in a total of 12,295 receptors, whereas using the BC AQMG spacing for all grids would have produced over 30,000 receptors. The modelled receptor grid is shown in Figure 4.5-1.

As discussed above in Section 2.3, the receptor grid (and therefore the CALPUFF domain) in the current assessment was larger than in the 2014 FEIS, in order to expand the area in which predicted concentrations are available for the purposes of assessing potential impacts.

4.6.2 Discrete Sensitive Receptors

Discrete sensitive receptors were used to model the air quality at specific locations of interest to human health in the Meliadine Mine area. The results at these receptors are used to inform components of the FEIS Addendum for the Meliadine Extension such as the Human Health Effects Assessment. The sensitive receptors in the current assessment are different from those in the 2014 FEIS; they have been updated to account for current locations of cabins. Generally the updated sensitive receptors are closer to the mine site compared to the 2014 FEIS. Discrete sensitive receptor locations in the current assessment are shown in Figure 4.5-1 and are tabulated in Appendix A.

4.7 Model Input Data

4.7.1 Terrain Elevation Data

Terrain elevation data used in the modelling were Canadian Digital Elevation Model (CDEM), obtained in a gridded format at 20 m horizontal resolution (Government of Canada 2021). These data were used to interpolate elevations of the modelled sources and receptors. The CALMET output files from the 2014 FEIS modelling were produced using elevation data from the Shuttle Radar Topography Mission (SRTM; Agnico Eagle 2014).

4.7.2 Land Use Data

Land use data at 30 m resolution from the Landsat satellite were input to CALMET using the CTGPROC land use pre-processor (Agnico Eagle 2014).

4.7.3 Meteorological Data

The CALMET processor was used to create CALPUFF-ready inputs which consist of hourly values of surface parameters (e.g. stability category, mixing depth, air temperature) and profiles of wind speed and direction at each grid cell throughout the modelling domain. CALMET used the output of a meteorological model, the Pennsylvania State University/National Center for Atmospheric Research Mesoscale Model version 5 (MM5), as the primary input. The years 2006 through 2010 were used (Agnico Eagle 2014).

The MM5 meteorological data covered an area of approximately 50 km (north to south) by 50 km (east to west) with a horizontal resolution of 4 km. Upper air data required by the model were also provided by the MM5 dataset.

4.7.4 CALMET QA/QC

The quality assurance and quality control process (QA/QC) for the CALMET output is described, with plots, in the 2014 FEIS modelling report (Agnico Eagle 2014).

4.7.5 Existing Ambient Air Quality

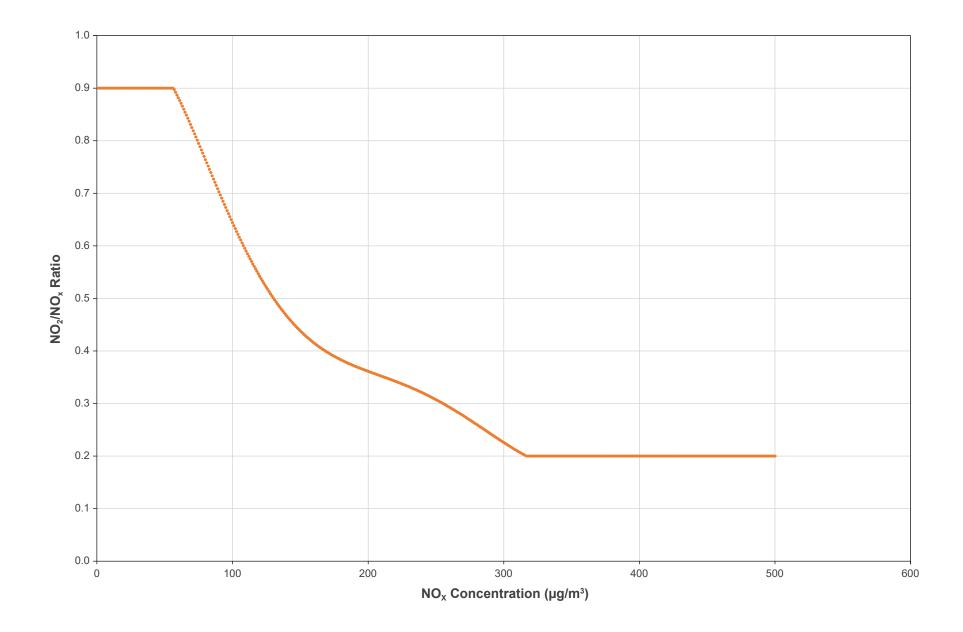
Existing ambient air quality data in the form of background values were not added to the model results (see Section 4.1), due to the remote nature of the site and to be as consistent as possible (within reason) with the 2014 FEIS modelling.

4.7.6 Emission Sources

Emission sources used as part of the model input are discussed in Section 5.

4.7.7 Model Parameters

The list of parameters (or switches) used to run CALPUFF are included in Appendix B. Parameters were chosen based on professional judgement, experience and guidance from the BC AQMG (BC MOE 2015).


4.7.8 Nitrogen Oxides and Nitrogen Dioxide


 NO_x emissions were included as model input in the emissions inventory and resulting ambient NO_x concentrations were predicted. Ambient NO_2 concentrations were calculated from the predicted ambient NO_x concentrations using the Ambient Ratio Method (ARM), the Rural curve in Figure A-1 (ENV 2021). The ARM Rural curve uses hourly NO and NO_2 observations from at least one year of representative monitoring data from five sites. The ARM Rural curve provides:

- a lower NO_x limit of 56.4 μ g/m³ (up to 56.4 μ g/m³ of NO_x, the NO₂/NO_x ratio = 0.9);
- an upper NO_x limit of 316.7 μ g/m³ (above 316.7 μ g/m³ of NO_x, the NO₂/NO_x ratio = 0.2); and
- a curve describing the upper envelope of the scatterplot of the NO₂/NO_x ratio vs NO_x (between 56.4 μg/m³ and 316.7 μg/m³ of NO_x). The equation of the curve is:

 $NO_2/NO_x = -1.4534E - 14(NO_x)^6 + 2.0910E - 11(NO_x)^5 - 1.1639E - 8(NO_x)^4 + 3.1248E - 06(NO_x)^3 - 4.0219E - 04(NO_x)^2 + 1.8014E - 02(NO_x) + 0.70908$

The curve is shown in Figure 4.7-1.

5. EMISSIONS INVENTORY

An emissions inventory was prepared for the AQMS that was used to calculate inputs for the air dispersion model. The objective of the emissions inventory was to estimate maximum air emissions of air contaminants from the Meliadine Extension components and activities during 2030.

The emissions inventory for the AQMS was built using a number of information sources, calculations and assumptions. The primary source of information about air emissions was Agnico Eagle.

Details about the methods used to quantify the Meliadine Mine's air emissions are provided in Appendix C. The emissions inventory is tabulated in Appendix D.

5.1 Emissions Inventory Scenarios

The total emission rates of each modelled contaminant are summarized by source group in Table 5.1-1, for Scenario 1. Note that these rates cannot be used to calculate total annual emissions because some sources, such as the incinerator, underground blasting, and surface blasting are not active 24 hours per day.

Source Group (units)	NOx	SO ₂
Generators, Incinerator, Gensets (g/s)	6.83E+01	4.33E-02
Vent Raises, UG Mobile emissions (g/s)	5.60E-02	1.44E-03
Portals, UG Mobile emissions (g/s)	5.60E-02	1.44E-03
Vent Raises, UG Blasting emissions (g/s)	2.84E-01	0
Portals, UG Blasting emissions (g/s)	2.84E-01	0
Volume Sources, Surface Blasting emissions (g/s)	1.27E+00	0
Road Sources (g/s/m)	9.55E-05	1.96E-06

The total emission rates of each modelled contaminant are summarized by source type in Table 5.1-2, for Scenario 2.

Table 5.1-2: Emissions Summary, Scenario 2

Source Group (units)	NOx	SO ₂
Generators, Incinerator, Gensets (g/s)	3.63E+01	3.41E-02
Vent Raises, UG Mobile emissions (g/s)	5.60E-02	1.44E-03
Portals, UG Mobile emissions (g/s)	5.60E-02	1.44E-03
Vent Raises, UG Blasting emissions (g/s)	2.84E-01	0
Portals, UG Blasting emissions (g/s)	2.84E-01	0
Volume Sources, Surface Blasting emissions (g/s)	1.27E+00	0
Road Sources (g/s/m)	9.55E-05	1.96E-06

The total emission rates of each modelled contaminant are summarized by source type in Table 5.1-3, for Scenario 3.

Source Group (units)	NO _x	SO ₂
Generators, Incinerator, Gensets (g/s)	2.04E+01	2.95E-02
Vent Raises, UG Mobile emissions (g/s)	5.60E-02	1.44E-03
Portals, UG Mobile emissions (g/s)	5.60E-02	1.44E-03
Vent Raises, UG Blasting emissions (g/s)	2.84E-01	0
Portals, UG Blasting emissions (g/s)	2.84E-01	0
Volume Sources, Surface Blasting emissions (g/s)	1.27E+00	0
Road Sources (g/s/m)	9.55E-05	1.96E-06

Table 5.1-3: Emissions Summary, Scenario 3

5.2 Common Assumptions

Where input data uncertainties existed, conservative assumptions following regulatory guidance, professional judgement and experience were used. The use of conservative assumptions can lead to conservative model predictions and therefore the results from the model study are interpreted with the understanding that the predicted effects are likely overestimated.

Common assumptions used to prepare the emissions inventory are listed below.

- Unless specified, all emissions are generated at a constant rate at all times of the year.
- The US EPA Motor Vehicle Emission Simulator version 2014b (MOVES2014b; US EPA 2018) was used to generate emission factors for all mobile equipment.

Additional assumptions specific to each emission source type are described in Section 5.4 and in Appendix C.

5.3 Emission Scaling Factors

For the purpose of modelling the maximum 1-hour and annual average ambient air concentrations used to compare against the relevant ambient air quality SOGs (see Section 3), emission scaling factors were not used to adjust model output. This was because real-world emissions that are not approximately continuous were modelled in CALPUFF with variable emission rates (i.e. emissions were modelled during only the hours, days, or months when a given source was active).

For most emission sources, it was assumed that emissions were generated continuously for the purpose of modelling the maximum 1-hour ambient air quality (i.e., the 1-hour emission scaling factor is 1.0). For blasting, the total amount of emissions calculated to be released within a one hour period were divided equally over the one hour period. In these cases, the resulting adjusted emission rate will account for the sub-hourly emissions and therefore a 1-hour emission scaling factor of 1.0 was used.

5.4 Emission Sources

Air emissions associated with the Meliadine Mine and the Meliadine Extension are outlined in this section. The current assessment modelled the Meliadine Extension, but because it is an extension of the existing mine, as opposed to a completely new or separate mine, the Extension has some sources in common with the existing mine. For example, as stated below in Section 5.4.1, some emission information came from stack test reports.

Sources were categorized and modelled as CALPUFF point, volume, or road sources. The CALPUFF road source type was first introduced in CALPUFF version 7, which was released in June 2015.

5.4.1 Point Sources

Air emission sources emitted by a fixed stack were modelled as CALPUFF point sources.

The 16 point sources included in the modelling were identified and characterized based on information provided by Agnico Eagle. See Appendix D for a list of the point sources modelled.

The characteristics of each stack and the sources of information used to inform each stack characteristic are listed in Appendix C. Some information was provided by Agnico Eagle without additional details about the source of the information (e.g., information could be from as-built specifications, measured data, or estimated data).

The modelled emission species for each stack and the sources of information used to determine each stack's emission species are included in Appendix C.

The most recent stack test reports were used to inform some of the stack information (see Appendix C, Tables C2.3-2 and C2.3-4).

Emission rate references for NO_x and SO₂ are listed in Appendix C, Table C2.3-4.

Emissions from point sources can be subject to plume downwash, a phenomenon in which sufficiently high buildings that are located sufficiently close to a stack can disrupt airflow around them, entraining the plume and drawing it down to ground level, causing high ground-level concentrations near the stack. To account for this in the modelling, the Building Profile Input Program for the PRIME algorithm (BPIP-PRIME) was used. Stack heights and locations, and building heights and locations, are input to BPIP-PRIME, which assesses the potential downwash effect (if any) of each building on each stack. The output from BPIP-PRIME was then used as part of the CALPUFF input files. A list of the 13 buildings that were input to BPIP-PRIME is provided in Appendix E.

5.4.1.1 Underground Mobile Emissions

Emissions from underground vehicles were modelled as emissions from vent raises and portals, both of which were modelled as point sources. Each underground mining area was associated with one vent raise and one portal. The emissions for each area were divided evenly between the applicable vent raise and portal. Point source emission parameters (e.g. stack height, stack diameter, exit velocity) were either provided by Agnico Eagle, or sufficient data were provided to enable the calculation of the parameters. Exit velocities were calculated for the portals, but because their orientation is nearly horizontal as opposed to vertical, it was assumed that they decline 10 degrees from the horizontal and then calculated the vertical component of their exit velocity for use as the exit velocity of the modelled point source.

5.4.1.2 Underground Blasting Emissions

Point sources (vent raises and portals) were used to model emissions from underground blasting. Underground blasting was modelled at the following areas:

- Tiriganiaq Underground, one blast per day during January through August, and October, 5 pm – 6 pm;
- Pump Underground, one blast per day during September and November, 5 pm 6 pm; and
- Discovery Underground, one blast per day during December, 5 pm 6 pm.

Each underground mining area was associated with one vent raise and one portal. The emissions for each area were divided evenly between the applicable vent raise and portal.

Agnico Eagle stated that underground blasts in 2030 will occur at the locations and times listed above and that underground blasting will occur seven days per week. For the annual underground blasting emissions inventory, it was assumed there are seven blasts per week, site-wide. The modelling used emission rates (in g/s) calculated based on total annual emissions divided by seven underground blasts per week.

In order to calculate emissions from the use of the emulsion for blasting product, blasting emissions for NO_x and SO_2 in each area were calculated using emission factors obtained by Agnico Eagle from the supplier. In Appendix C, Table C2.3-5 describes the input data used for the emissions inventory calculations.

5.4.2 Volume Sources

Volume sources were used to model emissions from surface blasting, meaning blasting in pits. Surface blasting was modelled at the following pits:

- Wesmeg WN01, one blast every Wednesday, Thursday, and Friday, 5 pm 6pm;
- Pump 03, one blast every Tuesday, 5 am 6 am; and
- F Zone 01, one blast every Monday, 5 am 6 am.

Blasting activities inside the pits were modelled with one volume source in each pit, located approximately in the centre of the pit.

Agnico Eagle stated that surface blasts in 2030 will occur during the days and times listed above, and that surface blasting will occur five days per week. For the 2030 surface blasting emissions inventory, it was assumed that there are five blasts per week, site-wide. The modelling used emission rates (in g/s) calculated based on total annual emissions divided by five surface blasts per week.

In order to calculate emissions from the use of the emulsion for blasting product, blasting emissions for NO_x and SO_2 in each pit were calculated using emission factors obtained by Agnico Eagle from the supplier. In Appendix C, Table C2.4-1 describes the input data used for the emissions inventory calculations.

5.4.3 Road Sources

CALPUFF road sources were used to model tailpipe emissions along specific roads from specific equipment categories and activities. Emission rates of NO_x and SO_2 were modelled using the MOVES2014b emissions model (US EPA 2018), which classifies vehicles as either OnRoad (highway-legal vehicles such as pickup trucks and long-distance cargo trucks) or NonRoad (non-highway vehicles such as mine haul trucks, bulldozers, graders, and man lifts).

Mobile equipment information for OnRoad and NonRoad equipment for both the surface and underground fleets was provided by Agnico Eagle, including details of equipment type, equipment model number, active status and usage area. For simplicity and with the aim of being slightly conservative, all OnRoad and NonRoad mobile units were assumed to have a 2020 engine manufacture year; because the modelled year of emissions was 2030, this means that all units were assumed to be 10 years old.

Tailpipe emission factors for OnRoad and NonRoad equipment are described in Sections 5.4.3.1 and 5.4.3.2.

5.4.3.1 On-road Equipment Emission Factors

On-road vehicle emissions were calculated using MOVES2014b, using the OnRoad module. All model configuration parameters are listed in Appendix C, Table C2.5-1 for the OnRoad module run.

The engine load factors and utilization rates for on-road equipment are incorporated into the OnRoad module and the emission rate factor output is in units of grams per vehicle kilometre travelled (g/VKT).

The on-road equipment that was modelled with CALPUFF road sources included:

- pickup trucks;
- transport buses (assigned as light commercial trucks in MOVES2014b output); and
- transport and fuel trucks (assigned as single unit long-haul trucks in MOVES2014b output).

5.4.3.2 Non-road Equipment Emission Factors

Non-road vehicle emissions were calculated using MOVES2014b, using the NonRoad module. All model configuration parameters are listed in Appendix C, Table C2.5-2 for the NonRoad module run.

The non-road equipment that was modelled as CALPUFF road sources included:

- mine haul trucks;
- loaders;

- forklifts;
- telehandlers;
 - backhoes; manlifts; and
- bulldozers;
- cranes.

skidsteers:

Unlike the OnRoad module, the engine load factors and equipment utilization rates for non-road equipment are not incorporated in the emission rate factor output (g/s units). Engine load factor ratings for non-road equipment were taken from US EPA Median Life, Annual Activity, and Load Factor Values for Nonroad Engine Emissions Modeling (2010). The utilization rate (operating hours per year) for all mobile units was provided by Agnico Eagle.

5.4.3.3 Tailpipe Emissions

Tailpipe emission factors for OnRoad equipment (g/VKT) and NonRoad equipment (g/s) were converted to the same units of g/VKT. NonRoad equipment emission factors in g/VKT were calculated by:

$$EF\left(\frac{g}{VKT}\right) = vehicle\ emission\ rate\ \left(\frac{g}{s}\right) * \frac{length\ of\ each\ road\ transit\ (km)}{vehicle\ speed\ \left(\frac{km}{h}\right)} * \frac{1}{length\ of\ each\ road\ transit\ (km)}$$

Tailpipe emission rates for the CALUFF road source (g/s/m) were then calculated for each modelled road segment by:

Road source emission rate
$$\left(\frac{g}{s m}\right)$$

= vehicle emission rate $\left(\frac{g}{VKT}\right)$ * road segment length (km)
* number of one way vehicle transits per hour * time unit conversion * distance unit conversion

The modelled road segments, distances, speeds, and vehicle types are listed in Appendix C, Table C2.5-3, and references are listed in Appendix C, Table C2.5-4.

For haul truck traffic, the emissions for each road segment were calculated based on the known amount of material (overburden, tailings, waste rock, salt rock, and ore) transported to different areas of the mine (e.g., crusher location and waste rock locations). Appendix C, Table C2.5-5 summarizes the 2030 material movement amounts based on Agnico Eagle's LOM data.

6. MODELLING RESULTS

Predicted ambient air quality results are presented for three modelled cases:

- Scenario 1 0% of required power from the wind farm.
- Scenario 2 50% of required power from the wind farm.
- Scenario 3 75% of required power from the wind farm.

Results are presented by using the 99th or 98th percentile (according to the relevant ambient air quality SOGs) predicted contaminant concentration for each applicable averaging period. The results include gridded and discrete sensitive receptors that were on or outside of the Site Study Area (see Section 4.6). Results from the sensitive receptors are presented separately, in Appendix A.

In the Discovery area of the mine, some receptors are located approximately 430 m east of the Discovery vent raise. Because of the close proximity of the receptors to the emission source, most of the maximum predicted concentrations are located along the east side of the Discovery area, even though the total emissions from this area are lower than from other Meliadine Mine areas. The location of the predicted maxima in the Discovery area is a function of the relatively short distance for dispersion (430 m); it is not an indicator of high emissions from Discovery.

For Scenarios 1, 2 and 3, the modelling represents the year of peak planned Meliadine Mine emissions (2030), and for all three cases it incorporates a number of conservative assumptions (see Section 5). The use of conservative assumptions can lead to conservative model predictions and therefore the model results are interpreted with the understanding that the predicted effects are likely overestimated.

The model results are represented below, in Figure 6-1. No concentration isopleths are shown because there were no modelled concentrations above the 2020 or 2025 CAAQS or Nunavut Standards for NO_2 or SO_2 .

The following air contaminants and averaging periods are presented in the results tables and in Figure 6-1:

- 1-hour and annual NO₂; and
- 1-hour and annual SO₂.

6.1 Scenario 1

The maximum predicted ambient air contaminant concentrations for Scenario 1 are summarized in Table 6.1-1. The highest ambient concentrations were located within 1 km of the Site Study Area. There were no predicted concentrations above the 2020 or 2025 CAAQS for NO_2 or SO_2 .

6.2 Scenario 2

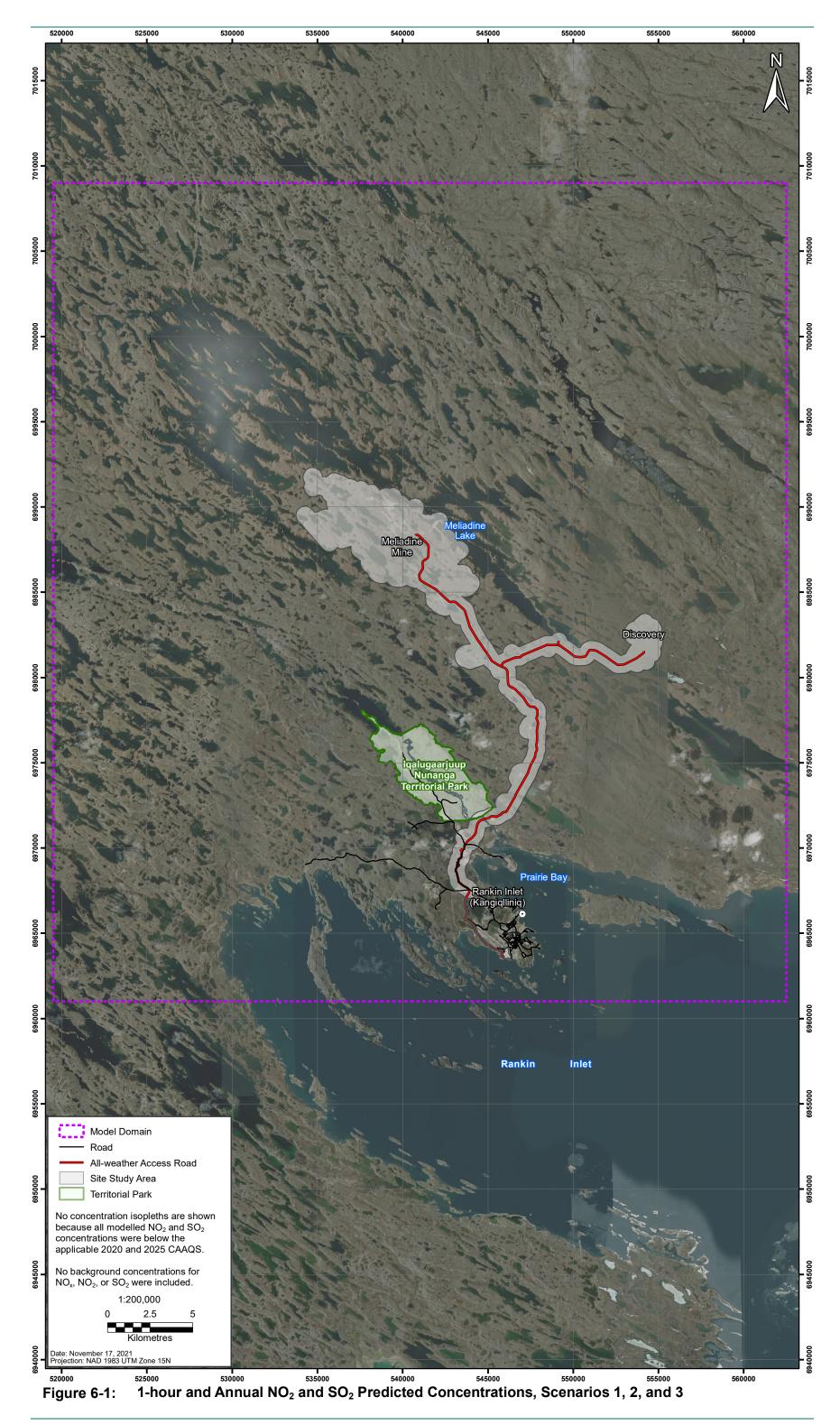
The maximum predicted ambient air contaminant concentrations for Scenario 2 are summarized in Table 6.1-1; they were similar to those for Scenario 1. The highest ambient concentrations were located within 1 km of the Site Study Area. There were no predicted concentrations above the 2020 or 2025 CAAQS for NO₂ or SO₂.

6.3 Scenario 3

The maximum predicted ambient air contaminant concentrations for Scenario 3 are summarized in Table 6.1-1; again they were similar to those for Scenario 1. The highest ambient concentrations were located within 1 km of the Site Study Area. There were no predicted concentrations above the 2020 or 2025 CAAQS for NO₂ or SO₂.

		NO ₂ (μg/m ³) ^(a)		SO ₂ (μg/m ³) ^(a)		
		1-hour Average ^(b)	Annual Average	1-hour Average ^(c)	Annual Average	
2020 CAAQS ^(d)		113	32	183	13	
2025 CAAQS ^(d)		79	22.5	170	10.5	
Scenario 1	Maximum Predicted Concentration [% of 2025 CAAQS]	76.9 [97%]	13.3 [59%]	48.8 [29%]	1.7 [17%]	
	Location of Maximum Predicted Concentration	N of Mine Plant	E of Discovery	E of Discovery	E of Discovery	
Scenario 2	Maximum Predicted Concentration [% of 2025 CAAQS]	76.4 [97%]	13.1 [58%]	48.8 [29%]	1.7 [17%]	
	Location of Maximum Predicted Concentration	E of Discovery	E of Discovery	E of Discovery	E of Discovery	
Scenario 3	Maximum Predicted Concentration [% of 2025 CAAQS]	76.4 [97%]	13.0 [58%]	48.8 [29%]	1.7 [17%]	
	Location of Maximum Predicted Concentration	E of Discovery	E of Discovery	E of Discovery	E of Discovery	

Table 6.1-1: Maximum Predicted NO₂ and SO₂ Concentrations


Notes:

^(a) Background concentrations are not included, as stated in Section 4.1.

^(b) The 1-hour NO₂ value uses the annual 98th percentile of the daily 1-hour maximum (D1HM), averaged over the three modelled years.

^(c) The 1-hour SO₂ value uses the annual 99th percentile of the daily 1-hour maximum (D1HM), averaged over the three modelled years.

^(d) See Section 3 for a description of the relevant SOGs.

7. SUMMARY

The AQMS used the CALPUFF air dispersion model (version 7.2.1) to predict the resulting ambient air quality due to emissions associated with Scenarios 1, 2 and 3.

The air contaminants modelled were NO₂ and SO₂. Contaminants were compared to relevant ambient air quality SOGs for Canada, which are more stringent and more recent than those for Nunavut.

The predicted ambient air quality results were compared against relevant SOGs for both ambient air quality contaminants. The results showed that concentrations of NO₂ and SO₂ were not predicted to exceed the relevant thresholds for all three modelled scenarios (no wind farm, 50% of power provided by wind farm).

8. **REFERENCES**

- Agnico Eagle Mines Limited. 2014. *Final Environmental Impact Statement (FEIS) Meliadine Gold Project, Nunavut.* Volume 5.0 Atmospheric Environment and Impact Assessment. Prepared for Agnico Eagle Mines Limited by Golder Associates Ltd., April 2014.
- BC MOE. 2015. British Columbia Air Quality Dispersion Modeling Guideline. <u>https://www2.gov.bc.ca/assets/gov/environment/air-land-water/air/reports-pub/bc-dispersion-modelling-guideline-2015.pdf</u> (accessed October 2021).
- ENV (BC Ministry of Environment and Climate Change Strategy, formerly BC MOE). 2021. *Guidance for* NO₂ Dispersion Modeling in British Columbia - Draft. Victoria, BC, March 2021.
- Exponent. 2021. CALPUFF Modeling System. Maintained by model developers and distributed by Exponent. <u>http://www.src.com/</u> (accessed October 2021).
- Government of Canada. 2017a. *Canadian Ambient Air Quality Standards for nitrogen dioxide*. Canada Gazette Part I. 151(49). pp. 4585-4590.
- Government of Canada. 2017b. *Canadian Ambient Air Quality Standards for sulphur dioxide*. Canada Gazette Part I. 151(43). pp. 4073-4077.
- Government of Canada. 2021. *Canadian Digital Elevation Model, 1945-2011*. Natural Resources Canada. <u>https://open.canada.ca/data/en/dataset/7f245e4d-76c2-4caa-951a-45d1d2051333</u> (accessed October 2021).
- Government of Nunavut. 2011. Environmental Guideline for Ambient Air Quality. <u>https://gov.nu.ca/environment/documents/ambient-air-quality-2011</u>. Department of Environment (accessed October 2021).
- NIRB (Nunavut Impact Review Board). 2012. Guidelines for the Preparation of an Environmental Impact Statement for Agnico-Eagle Mines Ltd.'s Meliadine Project (NIRB File No. 11MN034). February 20, 2012.
- NIRB. 2020. Further Guidance for Impact Statement Addendum Regarding Agnico Eagle Mines Limited's "Saline Effluent Discharge to Marine Environment, Rankin Inlet, Meliadine Gold Mine, Nunavut" Project Proposal. July 17, 2020.
- NPC (Nunavut Planning Commission). 2000. *Keewatin Regional Land Use Plan*. Available on-line at: <u>https://www.nunavut.ca/sites/default/files/keewatin_regional_land_use_plan.pdf</u>. June 2000 (accessed October 2021).
- US EPA. 2010. *Median Life, Annual Activity, and Load Factor Values for Nonroad Engine Emissions Modeling*. <u>https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100058Z.txt</u> (accessed October 2021).
- US EPA. 2018. MOVES2014b: Motor Vehicle Emission Simulator (December 2018). US Environmental Protection Agency. <u>https://www.epa.gov/moves/moves-versions-limited-current-use</u> (accessed October 2021).

APPENDIX A DISCRETE SENSITIVE RECEPTOR LOCATIONS AND AMBIENT AIR QUALITY PREDICTIONS

Appendix A: Discrete Sensitive Receptor Locations and Ambient Air Quality Predictions

Receptor ID Description		UTM Coordinates,		Scenario 1			Scenario 2			Scenario 3					
		Zone 15V		NO ₂ (μg/m ³)		SO ₂ (µg/m ³)		NO ₂ (µg/m ³)		SO ₂ (µg/m ³)		NO ₂ (µg/m ³)		SO ₂ (μg/m ³)	
		Easting (m)	Northing (m)	1 Hour Average	Annual Average										
Background v	alue included in results:			none	none										
SR_006	Present Day Cabin	538285	6991299	68.5	3.2	17.0	0.14	65.0	2.1	17.0	0.14	61.7	1.6	17.0	0.14
SR_007	Present Day Cabin Tatty's	533152	6988279	63.1	1.2	6.1	0.05	46.6	0.8	6.1	0.05	32.6	0.6	6.1	0.05
SR_010	Present Day Cabin Peter's	545225	6985656	61.1	2.1	7.4	0.06	45.8	1.3	7.4	0.06	39.8	0.9	7.4	0.06
SR_012	Present Day Cabin Barney Tootoo's	547622	6984512	54.9	1.5	5.5	0.05	38.1	0.9	5.5	0.05	34.3	0.7	5.5	0.05
SR_014	Present Day Cabin	549401	6982060	44.0	1.3	4.7	0.06	32.9	0.9	4.7	0.06	31.5	0.7	4.7	0.06
SR_015	Iqalugaarjuup Nunanga Territorial Park	544890	6972788	30.5	1.4	3.1	0.09	25.4	1.1	3.1	0.09	22.7	0.9	3.1	0.09
SR_016	Iqalugaarjuup Nunanga Territorial Park	543963	6972096	29.1	1.2	3.0	0.08	24.7	1.0	3.0	0.08	21.1	0.8	3.0	0.08
SR_017	Present Day Cabin Tommy's	544203	6970536	26.6	1.1	2.5	0.07	22.7	0.9	2.5	0.07	19.1	0.7	2.5	0.07
SR_018	Present Day Cabin Ugjuk's	545247	6969620	22.7	1.0	2.2	0.06	18.6	0.8	2.2	0.06	16.6	0.7	2.2	0.06
SR_019	Present Day Cabin Angutetuark's	545976	6969572	21.4	1.1	2.1	0.06	17.1	0.8	2.1	0.06	15.5	0.7	2.1	0.06
SR_020	Present Day Cabin Ollie's	550012	6966463	17.8	0.9	1.5	0.05	13.7	0.7	1.5	0.05	11.8	0.6	1.5	0.05
SR_021	Present Day Cabin Nattar's	550596	6966144	18.0	0.9	1.5	0.05	14.0	0.7	1.5	0.05	11.8	0.6	1.5	0.05
SR_022	Rankin Inlet Receptor	546542	6965844	18.9	0.9	1.6	0.06	15.2	0.7	1.6	0.06	13.4	0.6	1.6	0.06
SR_023	Rankin Inlet Receptor	545878	6964944	20.1	0.9	1.7	0.05	16.6	0.7	1.7	0.05	13.9	0.6	1.7	0.05
SR_024	Rankin Inlet Receptor	546669	6964799	18.2	0.9	1.6	0.05	14.6	0.7	1.6	0.05	12.7	0.6	1.6	0.05
SR_025	Rankin Inlet Receptor	546369	6964272	19.6	0.9	1.6	0.05	15.7	0.7	1.6	0.05	13.5	0.6	1.6	0.05
SR_026	Present Day Cabin	534577	6987444	64.7	1.3	7.4	0.07	52.9	1.0	7.4	0.07	46.3	0.8	7.4	0.07
SR_027	Present Day Cabin	536626	6985350	65.1	1.9	10.6	0.10	55.9	1.4	10.6	0.10	53.9	1.1	10.6	0.10
SR_028	Present Day Cabin	547398	6983260	46.3	1.5	5.4	0.06	37.0	1.0	5.4	0.06	36.4	0.8	5.4	0.06
SR_029	Present Day Cabin	547844	6983936	52.7	1.5	5.2	0.05	38.5	0.9	5.2	0.05	34.1	0.7	5.2	0.05

APPENDIX B CALPUFF PARAMETERS

Parameter	Description	Value
METRUN	Run all periods in met data file? (0 = no, 1 = yes)	0
IBYR	Starting year	2010
IBMO	Starting month	1
IBDY	Starting day	1
IBHR	Starting hour	0
IBMIN	Starting minute	0
IBSEC	Starting second	0
IEYR	Ending year	2010
IEMO	Ending month	12
IEDY	Ending day	31
IEHR	Ending hour	23
IEMIN	Ending minute	0
IESEC	Ending second	0
ABTZ	Base time zone	UTC-0500
NSECDT	Length of modeling time-step (seconds)	3600
NSPEC	Number of chemical species modeled	2
NSE	Number of chemical species to be emitted	2
ITEST	Stop run after SETUP phase (1 = stop, 2 = run)	2
MRESTART	Control option to read and/or write model restart data	0
NRESPD	Number of periods in restart output cycle	0
METFM	Meteorological data format (1 = CALMET, 2 = ISC, 3 = AUSPLUME, 4 = CTDM, 5 = AERMET)	1
MPRFFM	Meteorological profile data format (1 = CTDM, 2 = AERMET)	1
AVET	Averaging time (minutes)	60
PGTIME	PG Averaging time (minutes)	60
IOUTU	Output units for binary output files (1 = mass, 2 = odour, 3 = radiation)	1
MGAUSS	Near field vertical distribution (0 = uniform, 1 = Gaussian)	1
MCTADJ	Terrain adjustment method (0 = none, 1 = ISC-type, 2 = CALPUFF-type, 3 = partial plume path)	3
MCTSG	Model subgrid-scale complex terrain? (0 = no, 1 = yes)	0
MSLUG	Near-field puffs modeled as elongated slugs? (0 = no, 1 = yes)	0
MTRANS	Model transitional plume rise? (0 = no, 1 = yes)	1
MTIP	Apply stack tip downwash to point sources? (0 = no, 1 = yes)	1
MRISE	Plume rise module for point sources (1 = Briggs, 2 = numerical)	1
MTIP_FL	Apply stack tip downwash to flare sources? (0 = no, 1 = yes)	0
MRISE_FL	Plume rise module for flare sources (1 = Briggs, 2 = numerical)	2

Appendix B: CALPUFF Parameters

Parameter	Description			
MBDW	Building downwash method (1 = ISC, 2 = PRIME)			
MSHEAR	Treat vertical wind shear? (0 = no, 1 = yes)	0		
MSPLIT	Puff splitting allowed? (0 = no, 1 = yes)	0		
MCHEM	Chemical transformation method (0 = not modeled, 1 = MESOPUFF II, 2 = Userspecified, 3 = RIVAD/ARM3, 4 = MESOPUFF II for OH, 5 = half-life, 6 = RIVAD w/ISORROPIA, 7 = RIVAD w/ISORROPIA CalTech SOA)	0		
MAQCHEM	Model aqueous phase transformation? (0 = no, 1 = yes)	0		
MLWC	Liquid water content flag	1		
MWET	Model wet removal? (0 = no, 1 = yes)	0		
MDRY	Model dry deposition? (0 = no, 1 = yes)	0		
MTILT	Model gravitational settling (plume tilt)? (0 = no, 1 = yes)	0		
MDISP	Dispersion coefficient calculation method (1 = PROFILE.DAT, 2 = Internally, 3 = PG/MP, 4 = MESOPUFF II, 5 = CTDM)	2		
MTURBVW	Turbulence characterization method (only if MDISP = 1 or 5)	3		
MDISP2	Missing dispersion coefficients method (only if MDISP = 1 or 5)	3		
MTAULY	Sigma-y Lagrangian timescale method	0		
MTAUADV	Advective-decay timescale for turbulence (seconds)	0		
MCTURB	Turbulence method (1 = CALPUFF, 2 = AERMOD)	1		
MROUGH	PG sigma-y and sigma-z surface roughness adjustment? (0 = no, 1 = yes)	0		
MPARTL	Model partial plume penetration for point sources? (0 = no, 1 = yes)	1		
MPARTLBA	Model partial plume penetration for buoyant area sources? (0 = no, 1 = yes)	1		
MTINV	Strength of temperature inversion provided in PROFILE.DAT? (0 = no - compute from default gradients, 1 = yes)	0		
MPDF	PDF used for dispersion under convective conditions? $(0 = no, 1 = yes)$	1		
MSGTIBL	Sub-grid TIBL module for shoreline? (0 = no, 1 = yes)	0		
MBCON	Boundary conditions modeled? (0 = no, 1 = use BCON.DAT, 2 = use CONC.DAT)	0		
MSOURCE	Save individual source contributions? (0 = no, 1 = yes)	0		
MFOG	Enable FOG model output? (0 = no, 1 = yes - PLUME mode, 2 = yes - RECEPTOR mode)	0		
MREG	Regulatory checks (0 = no checks, 1 = USE PA LRT checks)	0		
CSPEC	Species included in model run	NOX		
CSPEC	Species included in model run	SO2		
PMAP	Map projection system	UTM		
FEAST	False easting at projection origin (km)	0.0		
FNORTH	False northing at projection origin (km)	0.0		
IUTMZN	UTM zone (1 to 60)	15		
UTMHEM	Hemisphere (N = northern, S = southern)	Ν		
RLAT0	Latitude of projection origin (decimal degrees)			

www.erm.com

Parameter	Description	Value
RLON0	Longitude of projection origin (decimal degrees)	0.00E
XLAT1	1st standard parallel latitude (decimal degrees)	30N
XLAT2	2nd standard parallel latitude (decimal degrees)	60N
DATUM	Datum-region for the coordinates	NAR-B
NX	Meteorological grid - number of X grid cells	92
NY	Meteorological grid - number of Y grid cells	102
NZ	Meteorological grid - number of vertical layers	10
DGRIDKM	Meteorological grid spacing (km)	0.5
ZFACE	Meteorological grid - vertical cell face heights (m)	0, 20, 50, 100, 200, 400, 800, 1200, 1600, 2200, 3000
XORIGKM	Meteorological grid - X coordinate for SW corner (km)	519
YORIGKM	Meteorological grid - Y coordinate for SW corner (km)	6958
IBCOMP	Computational grid - X index of lower left corner	1
JBCOMP	Computational grid - Y index of lower left corner	1
IECOMP	Computational grid - X index of upper right corner	92
JECOMP	Computational grid - Y index of upper right corner	102
LSAMP	Use sampling grid (gridded receptors) (T = true, F = false)	F
IBSAMP	Sampling grid - X index of lower left corner	1
JBSAMP	Sampling grid - Y index of lower left corner	1
IESAMP	Sampling grid - X index of upper right corner	2
JESAMP	Sampling grid - Y index of upper right corner	2
MESHDN	Sampling grid - nesting factor	1
ICON	Output concentrations to CONC.DAT? (0 = no, 1 = yes)	1
IDRY	Output dry deposition fluxes to DFLX.DAT? (0 = no, 1 = yes)	0
IWET	Output wet deposition fluxes to WFLX.DAT? (0 = no, 1 = yes)	0
IT2D	Output 2D temperature data? (0 = no, 1 = yes)	0
IRHO	Output 2D density data? (0 = no, 1 = yes)	0
IVIS	Output relative humidity data? (0 = no, 1 = yes)	0
LCOMPRS	Use data compression in output file (T = true, F = false)	т
IQAPLOT	Create QA output files suitable for plotting? (0 = no, 1 = yes)	0
IPFTRAK	Output puff tracking data? (0 = no, 1 = yes use timestep, 2 = yes use sampling step)	0
IMFLX	Output mass flux across specific boundaries? (0 = no, 1 = yes)	0
IMBAL	Output mass balance for each species? (0 = no, 1 = yes)	0
INRISE	Output plume rise data? (0 = no, 1 = yes)	0
ICPRT	Print concentrations? (0 = no, 1 = yes)	0

Parameter	Description	Value
IDPRT	Print dry deposition fluxes? (0 = no, 1 = yes)	0
IWPRT	Print wet deposition fluxes? (0 = no, 1 = yes)	0
ICFRQ	Concentration print interval (timesteps)	1
IDFRQ	Dry deposition flux print interval (timesteps)	1
IWFRQ	Wet deposition flux print interval (timesteps)	1
IPRTU	Units for line printer output (e.g., $3 = ug/m^3 - ug/m^2/s$, $5 = odor units$)	3
IMESG	Message tracking run progress on screen (0 = no, 1 and 2 = yes)	2
LDEBUG	Enable debug output? (0 = no, 1 = yes)	F
IPFDEB	First puff to track in debug output	1
NPFDEB	Number of puffs to track in debug output	1000
NN1	Starting meteorological period in debug output	1
NN2	Ending meteorological period in debug output	10
NHILL	Number of terrain features	0
NCTREC	Number of special complex terrain receptors	0
MHILL	Terrain and CTSG receptor data format (1 = CTDM, 2 = OPTHILL)	2
XHILL2M	Horizontal dimension conversion factor to meters	1
ZHILL2M	Vertical dimension conversion factor to meters	1
XCTDMKM	X origin of CTDM system relative to CALPUFF system (km)	0.0
YCTDMKM	Y origin of CTDM system relative to CALPUFF system (km)	0.0
RCUTR	Reference cuticle resistance (s/cm)	30
RGR	Reference ground resistance (s/cm)	10
REACTR	Reference pollutant reactivity	8
NINT	Number of particle size intervals for effective particle deposition velocity	9
IVEG	Vegetation state in unirrigated areas (1 = active and unstressed, 2 = active and stressed, 3 = inactive)	1
MOZ	Ozone background input option (0 = monthly, 1 = hourly from OZONE.DAT)	1
BCKO3	Monthly ozone concentrations (ppb)	12*80
MNH3	Ammonia background input option (0 = monthly, 1 = from NH3Z.DAT)	0
MAVGNH3	Ammonia vertical averaging option (0 = no average, 1 = average over vertical extent of puff)	1
BCKNH3	Monthly ammonia concentrations (ppb)	12*10
RNITE1	Nighttime SO ₂ loss rate (%/hr)	0.2
RNITE2	Nighttime NOx loss rate (%/hr)	2
RNITE3	Nighttime HNO ₃ loss rate (%/hr)	2
MH2O2	H_2O_2 background input option (0 = monthly, 1 = hourly from H2O2.DAT)	1
BCKH2O2	Monthly H ₂ O ₂ concentrations (ppb)	12*1
RH_ISRP	Minimum relative humidity for ISORROPIA	50
SO4_ISRP	Minimum SO4 for ISORROPIA	0.4

Parameter	Description	Value
BCKPMF	SOA background fine particulate (ug/m**3)	12*1
OFRAC	SOA organic fine particulate fraction	0.15, 0.15, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.15
VCNX	SOA VOC/NOX ratio	12*50
NDECAY	Half-life decay blocks	0
SYTDEP	Horizontal puff size for time-dependent sigma equations (m)	550
MHFTSZ	Use Heffter equation for sigma-z? (0 = no, 1 = yes)	0
JSUP	PG stability class above mixed layer	5
CONK1	Vertical dispersion constant - stable conditions	0.01
CONK2	Vertical dispersion constant - neutral/unstable conditions	0.1
TBD	Downwash scheme transition point option (<0 = Huber-Snyder, 1.5 = Schulman-Scire, 0.5 = ISC)	0.5
IURB1	Beginning land use category for which urban dispersion is assumed	10
IURB2	Ending land use category for which urban dispersion is assumed	19
ILANDUIN	Land use category for modeling domain	20
ZOIN	Roughness length for modeling domain (m)	0.25
XLAIIN	Leaf area index for modeling domain	3
ELEVIN	Elevation above sea level (m)	0
XLATIN	Meteorological station latitude (deg)	-999.0
XLONIN	Meteorological station longitude (deg)	-999.0
ANEMHT	Anemometer height (m)	10
ISIGMAV	Lateral turbulence format (0 = read sigma-theta, 1 = read sigma-v)	1
IMIXCTDM	Mixing heights read option (0 = predicted, 1 = observed)	0
XMXLEN	Slug length (met grid units)	1
XSAMLEN	Maximum travel distance of a puff/slug (met grid units)	1
MXNEW	Maximum number of slugs/puffs release from one source during one time step	10
MXSAM	Maximum number of sampling steps for one puff/slug during one time step	10
NCOUNT	Number of iterations used when computing the transport wind for a sampling step that includes gradual rise	2
SYMIN	Minimum sigma-y for a new puff/slug (m)	1
SZMIN	Minimum sigma-z for a new puff/slug (m)	1
SZCAP_M	Maximum sigma-z allowed to avoid numerical problem in calculating virtual time or distance (m)	5,000,000
SVMIN	Minimum turbulence velocities sigma-v (m/s)	0.5, 0.5, 0.5, 0.5 0.5, 0.5, 0.37, 0.37, 0.37, 0.37 0.37, 0.37

Parameter	Description	Value	
SWMIN	N Minimum turbulence velocities sigma-w (m/s)		
CDIV	Divergence criterion for dw/dz across puff (1/s)	0, 0	
NLUTIBL	TIBL module search radius (met grid cells)	4	
WSCALM	Minimum wind speed allowed for non-calm conditions (m/s)	0.5	
XMAXZI	Maximum mixing height (m)	3000	
XMINZI	Minimum mixing height (m)	50	
ТКСАТ	Emissions scale-factors temperature categories (K)	265, 270, 275, 280, 285, 290, 295, 300, 305, 310, 315	
PLX0	Wind speed profile exponent for stability classes 1 to 6	0.07, 0.07, 0.10, 0.15, 0.35, 0.55	
PTG0	Potential temperature gradient for stable classes E and F (deg K/m)	0.02, 0.035	
PPC	Plume path coefficient for stability classes 1 to 6	0.5, 0.5, 0.5, 0.5, 0.5, 0.35, 0.35, 0.35	
SL2PF	Slug-to-puff transition criterion factor (sigma-y/slug length)	10	
FCLIP	Hard-clipping factor for slugs (0.0 = no extrapolation)	0	
NSPLIT	Number of puffs created from vertical splitting	3	
IRESPLIT	Hour for puff re-split	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	
ZISPLIT	Minimum mixing height for splitting (m)	100	
ROLDMAX	Mixing height ratio for splitting	0.25	
NSPLITH	Number of puffs created from horizontal splitting	5	
SYSPLITH	Minimum sigma-y (met grid cells)	1	
SHSPLITH	Minimum puff elongation rate (SYSPLITH/hr)	2	
CNSPLITH	Minimum concentration (g/m ³)	0	
EPSSLUG	Fractional convergence criterion for numerical SLUG sampling integration	0.0001	
EPSAREA	Fractional convergence criterion for numerical AREA source integration	1E-006	
DSRISE	Trajectory step-length for numerical rise integration (m)	1	
HTMINBC	Minimum boundary condition puff height (m)	500	
RSAMPBC	Receptor search radius for boundary condition puffs (km)	10	
MDEPBC	Near-surface depletion adjustment to concentration $(0 = no, 1 = yes)$	1	

Notes:

The model parameters in this table were extracted from one of the Scenario 1 CALPUFF.inp files. Many CALPUFF.inp files were used for this assessment.

APPENDIX C AIR EMISSIONS INVENTORY METHODOLOGY

Appendix C: Air Emissions Inventory Methodology

1. INTRODUCTION

The purpose of this appendix is to summarize the CALPUFF air emissions inventory methodology that was used to model the Meliadine Gold Mine Extension (the Meliadine Extension), operated by Agnico Eagle Mines Limited (Agnico Eagle).

2. EMISSION INVENTORY METHODOLOGY

The Meliadine Extension emissions were calculated using information from the following sources, in priority order:

- 1. Meliadine Extension infrastructure and activity information provided by Agnico Eagle (e.g., mining rates, mobile equipment fleet inventory, building dimensions).
- 2. Meliadine Extension infrastructure and activity information available from public sources (e.g., satellite imagery and online photos of the mine).

2.1 Common Assumptions

The following common assumptions were used:

- Unless specified, all emissions are generated at a constant rate at all times of the year.
- The US EPA Motor Vehicle Emission Simulator version 2014b (MOVES2014b, US EPA 2018) was used to generate emission factors for all mobile equipment.

2.2 Emission Scaling Factors and Variable Emission Rates

For the purpose of modelling the maximum 1-hour and annual average ambient air concentrations, emission scaling factors were not used. This was because real-world emissions that are not approximately continuous were modelled in CALPUFF with variable emission rates.

For most emission sources, it was assumed that emissions were generated continuously for the purpose of modelling the maximum 1-hour ambient air quality (i.e., the 1-hour emission scaling factor is 1.0). For blasting, the total amount of emissions calculated to be released within a one hour period were divided equally over the one hour period. In these cases, the resulting adjusted emission rate will account for the sub-hourly emissions and therefore a 1-hour emission scaling factor of 1.0 was used.

2.3 Point Sources

The list of Point Source stacks included in the modelling were those identified during discussions between ERM and Agnico Eagle. Table C2.3-1 lists the Point Source stacks modelled.

The characteristics of each stack are listed in Table C2.3-1. The information used to inform each stack characteristic is listed in Table C2.3-2. Reference cells that are labelled with "Provided by Agnico Eagle" were provided to ERM without additional details about the source of the information (e.g., information could be from as-built specifications, measured data, or estimated data).

Modelled emission species for each stack are listed in Table C2.3-3. The information used to inform each stack emission species is listed in Table C2.3-4.

The most recent stack test reports were used to inform some of the stack information (see Tables C2.3-2 and C2.3-4; Consulair 2020; Wärtsilä 2018).

Emission rate references for NO_x and SO₂ are listed in Table C2.3-4.

2.3.1 Underground Blasting

Point sources (vent raises and portals) were used to model emissions from underground blasting. Underground blasting was modelled at the following areas:

- Tiriganiaq Underground, one blast per day during January through August, and October, 5 pm – 6 pm;
- Pump Underground, one blast per day during September and November, 5 pm 6 pm; and
- Discovery Underground, one blast per day during December, 5 pm 6 pm.

Each underground mining area was associated with one vent raise and one portal. The emissions for each area were divided evenly between the applicable vent raise and portal.

Agnico Eagle stated that underground blasts in 2030 will occur at the locations and times listed above (ERM selected which months to model blasting for each area, to come as close as possible to the correct number of blasts per area), and that underground blasting will occur seven days per week. For the annual underground blasting emissions inventory, it was assumed there are seven blasts per week, site-wide. The modelling used emission rates (in g/s) calculated based on total annual emissions divided by seven underground blasts per week.

In order to calculate emissions from the use of the emulsion for blasting product, blasting emissions for NO_x and SO_2 in each area were calculated using emission factors obtained by Agnico Eagle from the supplier (0.25 kg of NO_x emitted per tonne of product detonated, and no SO_2 emissions; Dyno 2019). Table C2.3-5 describes the input data used for the emissions inventory calculations.

2.4 Volume Sources

Volume sources were used to model emissions from surface blasting, meaning blasting in pits. Surface blasting was modelled at the following pits:

- Wesmeg WN01, one blast every Wednesday, Thursday, and Friday, 5 pm 6 pm;
- Pump 03, one blast every Tuesday, 5 am 6 am; and
- F Zone 01, one blast every Monday, 5 am 6 am.

Blasting activities inside the pits were modelled with one volume source in each pit, located approximately in the centre of the pit.

Agnico Eagle stated that surface blasts in 2030 will occur during the days and times listed above, and that surface blasting will occur five days per week. For the 2030 surface blasting emission inventory, it was assumed that there are five blasts per week, site-wide. The modelling used emission rates (in g/s) calculated based on total annual emissions divided by five surface blasts per week.

In order to calculate emissions from the use of the emulsion for blasting product, blasting emissions for NO_x and SO_2 in each pit were calculated using emission factors obtained by Agnico Eagle from the supplier (0.25 kg of NO_x emitted per tonne of product detonated, and no SO_2 emissions; Dyno 2019). Table C2.4-1 describes the input data used for the emission inventory calculations.

Table C2.3-1: Point Source Stack Characteristics

Source Description	UTM Easting (m)	UTM Northing (m)	Stack Height (m above ground)	Exit Temperature (Kelvin)	Stack Diameter (m)	Exit Velocity (m/s)	Discharge (m ³ /s)
Site Generator 1 of 4 (#374 aka Unit 1) ^(a)	539203	6990014	40.0	505.2	1.02	16.7	13.5
Site Generator 2 of 4 (#376 aka Unit 3) ^(b)	539200	6990022	40.0	470.2	1.02	16.0	13.0
Site Generator 3 of 4 (#377 aka Unit 4) ^(c)	539194	6990035	40.0	498.2	1.02	17.0	13.8
Site Generator 4 of 4 (#378 aka Unit 5) ^(d)	539190	6990045	40.0	509.2	1.02	18.0	14.6
Incinerator	539393	6989830	11.1	1172.2	0.80	8.6	4.9
gen set 500 kW at 600 V, Discovery	553721	6981510	2.0	791.4	0.20	21.7	2.2
gen set 500 kW at 600 V, Pump	540416	6986160	2.0	791.4	0.20	21.7	2.2
gen set 500 kW at 600 V, F Zone	542412	6985960	2.0	791.4	0.20	21.7	2.2
VR-W, mobile emissions, ventilation raise at Wesmeg	540687	6988138	5.0	280.9	4.00	6.5	81.5
VR-T, mobile emissions, ventilation raise at Tiriganiaq	539466	6987929	5.0	280.9	4.00	6.5	81.5
VR-WN, mobile emissions, ventilation raise at Wesmeg WN01	538844	6987937	5.0	280.9	4.00	6.5	81.5
VR-PW, mobile emissions, west ventilation raise at Pump	539455	6986656	5.0	280.9	4.00	6.5	81.5
VR-DE, mobile emissions, east ventilation raise at Discovery	554713	6981436	5.0	280.9	4.00	6.5	81.5
PRT-T mobile emissions, new portal near Tiriganiaq	539937	6988798	1.0	280.9	5.00	0.7	81.5
PRT-P, mobile emissions, portal at Pump	540440	6986209	1.0	280.9	5.00	0.7	81.5
PRT-D, mobile emissions, portal at Discovery	554068	6981483	1.0	280.9	5.00	0.7	81.5
BL-VR-T; blasting, Tiriganiaq Underground, vent raise ^(e)	539466	6987929	5.0	280.9	4.00	6.5	81.5
BL-VR-PW; blasting, Pump Underground, vent raise ^(e)	539455	6986656	5.0	280.9	4.00	6.5	81.5
BL-VR-DE; blasting, Discovery Underground, vent raise ^(e)	554713	6981436	5.0	280.9	4.00	6.5	81.5
BL-PRT-T; blasting, Tiriganiaq Underground, portal ^(e)	539937	6988798	1.0	280.9	5.00	0.7	81.5
BL-PRT-P; blasting, Pump Underground, portal ^(e)	540440	6986209	40.0	280.9	5.00	0.7	81.5
BL-PRT-D; blasting, Discovery Underground, portal ^(e)	554068	6981483	40.0	280.9	5.00	0.7	81.5

Notes:

^(a) Source active for Scenario 1 only.

^(b) Source active for Scenario 1 only.

^(c) Source active for Scenarios 1 and 2 only.

^(d) Source active for Scenarios 1, 2, and 3.

(e) The underground blasting sources are co-located with the vent raises and portals indicated. They were modelled as separate sources because mobile emissions were assumed to be continuous, whereas blasting emissions are only active at certain times.

Table C2.3-2: Point Source Stack Characteristic References

Source Description	UTM Coordinates	Stack Height	Exit Temperature	Stack Diameter	Exit Velocity	Discharge Rate
Site Generator 1 of 4 (#374 aka Unit 1)	Provided by Agnico Eagle	Provided by Agnico Eagle	Provided by Agnico Eagle	Provided by Agnico Eagle	Calculated from stack discharge rate and diameter	January 2018 stack test repor
Site Generator 2 of 4 (#376 aka Unit 3)	Provided by Agnico Eagle	Provided by Agnico Eagle	Provided by Agnico Eagle	Provided by Agnico Eagle	Calculated from stack discharge rate and diameter	January 2018 stack test repor
Site Generator 3 of 4 (#377 aka Unit 4)	Provided by Agnico Eagle	Provided by Agnico Eagle	Provided by Agnico Eagle	Provided by Agnico Eagle	Calculated from stack discharge rate and diameter	January 2018 stack test repor
Site Generator 4 of 4 (#378 aka Unit 5)	Provided by Agnico Eagle	Provided by Agnico Eagle	Provided by Agnico Eagle	Provided by Agnico Eagle	Calculated from stack discharge rate and diameter	January 2018 stack test repor
Incinerator	Provided by Agnico Eagle	Provided by Agnico Eagle	September 4, 2020 stack test report	Provided by Agnico Eagle	September 4, 2020 stack test report	September 4, 2020 stack test report
gen set 500 kW at 600 V, Discovery	Provided by Agnico Eagle	Provided by Agnico Eagle	Manufacturer's spec sheet	Provided by Agnico Eagle	Calculated from stack discharge rate and diameter	Manufacturer's spec sheet
gen set 500 kW at 600 V, Pump	Provided by Agnico Eagle	Provided by Agnico Eagle	Manufacturer's spec sheet	Provided by Agnico Eagle	Calculated from stack discharge rate and diameter	Manufacturer's spec sheet
gen set 500 kW at 600 V, F Zone	Provided by Agnico Eagle	Provided by Agnico Eagle	Manufacturer's spec sheet	Provided by Agnico Eagle	Calculated from stack discharge rate and diameter	Manufacturer's spec sheet
VR-W, mobile emissions, ventilation raise at Wesmeg	Provided by Agnico Eagle	Provided by Agnico Eagle	Provided by Agnico Eagle	Provided by Agnico Eagle	Calculated from stack discharge rate and diameter	Provided by Agnico Eagle
VR-T, mobile emissions, ventilation raise at Tiriganiaq	Provided by Agnico Eagle	Provided by Agnico Eagle	Provided by Agnico Eagle	Provided by Agnico Eagle	Calculated from stack discharge rate and diameter	Provided by Agnico Eagle
VR-WN, mobile emissions, ventilation raise at Wesmeg WN01	Provided by Agnico Eagle	Provided by Agnico Eagle	Provided by Agnico Eagle	Provided by Agnico Eagle	Calculated from stack discharge rate and diameter	Provided by Agnico Eagle
VR-PW, mobile emissions, west ventilation raise at Pump	Provided by Agnico Eagle	Provided by Agnico Eagle	Provided by Agnico Eagle	Provided by Agnico Eagle	Calculated from stack discharge rate and diameter	Provided by Agnico Eagle
VR-DE, mobile emissions, east ventilation raise at Discovery	Provided by Agnico Eagle	Provided by Agnico Eagle	Provided by Agnico Eagle	Provided by Agnico Eagle	Calculated from stack discharge rate and diameter	Provided by Agnico Eagle
PRT-T mobile emissions, new portal near Tiriganiaq	Provided by Agnico Eagle	Provided by Agnico Eagle	Provided by Agnico Eagle	Estimated from photos provided by Agnico Eagle	Calculated from stack discharge rate and diameter; the vertical component of the angular exit velocity was used	Provided by Agnico Eagle
PRT-P, mobile emissions, portal at Pump	Provided by Agnico Eagle	Provided by Agnico Eagle	Provided by Agnico Eagle	Estimated from photos provided by Agnico Eagle	Calculated from stack discharge rate and diameter; the vertical component of the angular exit velocity was used	Provided by Agnico Eagle
PRT-D, mobile emissions, portal at Discovery	Provided by Agnico Eagle	Provided by Agnico Eagle	Provided by Agnico Eagle	Estimated from photos provided by Agnico Eagle	Calculated from stack discharge rate and diameter; the vertical component of the angular exit velocity was used	Provided by Agnico Eagle
BL-VR-T; blasting, Tiriganiaq Underground, vent raise	Provided by Agnico Eagle	Provided by Agnico Eagle	Provided by Agnico Eagle	Provided by Agnico Eagle	Calculated from stack discharge rate and diameter	Provided by Agnico Eagle
BL-VR-PW; blasting, Pump Underground, vent raise	Provided by Agnico Eagle	Provided by Agnico Eagle	Provided by Agnico Eagle	Provided by Agnico Eagle	Calculated from stack discharge rate and diameter	Provided by Agnico Eagle
BL-VR-DE; blasting, Discovery Underground, vent raise	Provided by Agnico Eagle	Provided by Agnico Eagle	Provided by Agnico Eagle	Provided by Agnico Eagle	Calculated from stack discharge rate and diameter	Provided by Agnico Eagle
BL-PRT-T; blasting, Tiriganiaq Underground, portal	Provided by Agnico Eagle	Provided by Agnico Eagle	Provided by Agnico Eagle	Estimated from photos provided by Agnico Eagle	Calculated from stack discharge rate and diameter; the vertical component of the angular exit velocity was used	Provided by Agnico Eagle
BL-PRT-P; blasting, Pump Underground, portal	Provided by Agnico Eagle	Provided by Agnico Eagle	Provided by Agnico Eagle	Estimated from photos provided by Agnico Eagle	Calculated from stack discharge rate and diameter; the vertical component of the angular exit velocity was used	Provided by Agnico Eagle
BL-PRT-D; blasting, Discovery Underground, portal	Provided by Agnico Eagle	Provided by Agnico Eagle	Provided by Agnico Eagle	Estimated from photos provided by Agnico Eagle	Calculated from stack discharge rate and diameter; the vertical component of the angular exit velocity was used	Provided by Agnico Eagle

Table C2.3-3: Point S	Source Stack	Emission	Species
-----------------------	--------------	----------	---------

Source Description	NOx	SO ₂
Site Generator 1 of 4 (#374 aka Unit 1)	Х	Х
Site Generator 2 of 4 (#376 aka Unit 3)	Х	Х
Site Generator 3 of 4 (#377 aka Unit 4)	Х	Х
Site Generator 4 of 4 (#378 aka Unit 5)	Х	Х
Incinerator	Х	Х
gen set 500 kW at 600 V, Discovery	Х	Х
gen set 500 kW at 600 V, Pump	Х	Х
gen set 500 kW at 600 V, F Zone	Х	Х
VR-W, mobile emissions, ventilation raise at Wesmeg	Х	Х
VR-T, mobile emissions, ventilation raise at Tiriganiaq	Х	Х
VR-WN, mobile emissions, ventilation raise at Wesmeg WN01	Х	Х
VR-PW, mobile emissions, west ventilation raise at Pump	Х	Х
VR-DE, mobile emissions, east ventilation raise at Discovery	Х	Х
PRT-T mobile emissions, new portal near Tiriganiaq	Х	Х
PRT-P, mobile emissions, portal at Pump	Х	Х
PRT-D, mobile emissions, portal at Discovery	Х	Х
BL-VR-T; blasting, Tiriganiaq Underground, vent raise	Х	-
BL-VR-PW; blasting, Pump Underground, vent raise	Х	-
BL-VR-DE; blasting, Discovery Underground, vent raise	Х	-
BL-PRT-T; blasting, Tiriganiaq Underground, portal	Х	-
BL-PRT-P; blasting, Pump Underground, portal	Х	-
BL-PRT-D; blasting, Discovery Underground, portal	Х	-

Notes:

"X" = species included and emission rate calculated

Dash "-" = species not emitted by this source

Table C2.3-4: Point Source Stack Emission Rate References

Source Description	NOx	SO ₂
Site Generator 1 of 4 (#374 aka Unit 1)	January 2018 stack test report.	Calculated from fuel consumption rate
Site Generator 2 of 4 (#376 aka Unit 3)	January 2018 stack test report.	Calculated from fuel consumption rate
Site Generator 3 of 4 (#377 aka Unit 4)	January 2018 stack test report.	Calculated from fuel consumption rate
Site Generator 4 of 4 (#378 aka Unit 5)	January 2018 stack test report.	Calculated from fuel consumption rate
Incinerator	September 4, 2020 stack test report	Calculated from fuel consumption rate
gen set 500 kW at 600 V, Discovery	Manufacturer's spec sheet	Calculated from fuel consumption rate
gen set 500 kW at 600 V, Pump	Manufacturer's spec sheet	Calculated from fuel consumption rate
gen set 500 kW at 600 V, F Zone	Manufacturer's spec sheet	Calculated from fuel consumption rate
VR-W, mobile emissions, ventilation raise at Wesmeg	Calculated from MOVES2014b output for the mobile fleet	Calculated from MOVES2014b output for the mobile fleet
VR-T, mobile emissions, ventilation raise at Tiriganiaq	Calculated from MOVES2014b output for the mobile fleet	Calculated from MOVES2014b output for the mobile fleet
VR-WN, mobile emissions, ventilation raise at Wesmeg WN01	Calculated from MOVES2014b output for the mobile fleet	Calculated from MOVES2014b output for the mobile fleet
VR-PW, mobile emissions, west ventilation raise at Pump	Calculated from MOVES2014b output for the mobile fleet	Calculated from MOVES2014b output for the mobile fleet
VR-DE, mobile emissions, east ventilation raise at Discovery	Calculated from MOVES2014b output for the mobile fleet	Calculated from MOVES2014b output for the mobile fleet
PRT-T mobile emissions, new portal near Tiriganiaq	Calculated from MOVES2014b output for the mobile fleet	Calculated from MOVES2014b output for the mobile fleet
PRT-P, mobile emissions, portal at Pump	Calculated from MOVES2014b output for the mobile fleet	Calculated from MOVES2014b output for the mobile fleet
PRT-D, mobile emissions, portal at Discovery	Calculated from MOVES2014b output for the mobile fleet	Calculated from MOVES2014b output for the mobile fleet
BL-VR-T; blasting, Tiriganiaq Underground, vent raise	Calculated from emission factor provided by Agnico Eagle	Emission factor of zero provided by Agnico Eagle
BL-VR-PW; blasting, Pump Underground, vent raise	Calculated from emission factor provided by Agnico Eagle	Emission factor of zero provided by Agnico Eagle
BL-VR-DE; blasting, Discovery Underground, vent raise	Calculated from emission factor provided by Agnico Eagle	Emission factor of zero provided by Agnico Eagle
BL-PRT-T; blasting, Tiriganiaq Underground, portal	Calculated from emission factor provided by Agnico Eagle	Emission factor of zero provided by Agnico Eagle
BL-PRT-P; blasting, Pump Underground, portal	Calculated from emission factor provided by Agnico Eagle	Emission factor of zero provided by Agnico Eagle
BL-PRT-D; blasting, Discovery Underground, portal	Calculated from emission factor provided by Agnico Eagle	Emission factor of zero provided by Agnico Eagle

Underground Area	Parameter	Units	Value	Reference
Site-wide	Amount of emulsion for blasting product used in 2030	kg/year	2,986,489	Provided by Agnico Eagle
	Number of blasts in 2030	blasts/year	365	Agnico Eagle states that there is 1 blast per day, 7 days a week.
	Total ore extracted in 2030	tonnes/year	2,304,465	Provided by Agnico Eagle
	Total waste rock extracted in 2030	tonnes/year	1,209,051	Provided by Agnico Eagle
	Total material (ore+waste rock) blasted in 2030	tonnes/year	3,513,516	Calculated
Tiriganiaq	Amount of emulsion for blasting product used in 2030	kg/year	744,577	Calculated using the site- wide total multiplied by the ratio of pit material blasted vs site-wide material blasted
	Number of blasts in 2030	blasts/year	91	Calculated using the site- wide total multiplied by the ratio of pit material blasted vs site-wide material blasted
	Total material (ore+waste rock+overburden) blasted in 2030	tonnes/year	871,850	Provided by Agnico Eagle
Wesmeg	Amount of emulsion for blasting product used in 2030	kg/year	1,268,235	Estimated using the site- wide total multiplied by the ratio of pit ore extracted vs site-wide ore extracted
	Number of blasts in 2030	blasts/year	155	Estimated using the site- wide total multiplied by the ratio of pit ore extracted vs site-wide ore extracted
	Total material (ore+waste rock) blasted in 2030	tonnes/year	1,545,548	Provided by Agnico Eagle
Wesmeg WN01	Amount of emulsion for blasting product used in 2030	kg/year	229,101	Estimated using the site- wide total multiplied by the ratio of pit ore extracted vs site-wide ore extracted
	Number of blasts in 2030	blasts/year	28	Estimated using the site- wide total multiplied by the ratio of pit ore extracted vs site-wide ore extracted
	Total material (ore+waste rock) blasted in 2030	tonnes/year	149,092	Provided by Agnico Eagle

Table C2.3-5: Underground Blasting, Calculation Inputs

Underground Area	Parameter	Units	Value	Reference
Pump	Amount of emulsion for blasting product used in 2030	kg/year	490,930	Estimated using the site- wide total multiplied by the ratio of pit ore extracted vs site-wide ore extracted
	Number of blasts in 2030	blasts/year	60	Estimated using the site- wide total multiplied by the ratio of pit ore extracted vs site-wide ore extracted
	Total material (ore+waste rock) blasted in 2030	tonnes/year	525,434	Provided by Agnico Eagle
Discovery	Amount of emulsion for blasting product used in 2030	kg/year	253,647	Estimated using the site- wide rate multiplied by the ratio of pit ore extracted vs site-wide ore extracted
	Number of blasts in 2030	blasts/year	31	Estimated using the site- wide total multiplied by the ratio of pit ore extracted vs site-wide ore extracted
-	Total material (ore+waste rock) blasted in 2030	tonnes/year	421,592	Provided by Agnico Eagle

Pit	Parameter	Units	Value	Reference
Site-wide	Amount of emulsion for blasting product used in 2030	kg/year	4,765,410	Provided by Agnico Eagle
	Number of blasts in 2030	blasts/year	260	Agnico Eagle states that there is 1 blast per day, 5 days a week
	Total ore extracted in 2030	tonnes/year	1,227,191	Provided by Agnico Eagle
	Total waste rock extracted in 2030	tonnes/year	8,313,774	Provided by Agnico Eagle
	Total overburden extracted in 2030	tonnes/year	2,432,426	Provided by Agnico Eagle
	Total material (ore+waste rock+overburden) blasted in 2030	tonnes/year	11,973,391	Calculated
Wesmeg WN01	Amount of emulsion for blasting product used in 2030	kg/year	2,859,246	Calculated using the site- wide total multiplied by the ratio of pit material blasted vs site-wide material blasted
	Number of blasts in 2030	blasts/year	156	Calculated using the site- wide total multiplied by the ratio of pit material blasted vs site-wide material blasted
	Total material (ore+waste rock+overburden) blasted in 2030	tonnes/year	7,872,561	Provided by Agnico Eagle
Pump 01 and Pump 03 ^(a)	Amount of emulsion for blasting product used in 2030	kg/year	953,082	Estimated using the site-wide total multiplied by the ratio of pit ore extracted vs site-wide ore extracted
	Number of blasts in 2030	blasts/year	52	Estimated using the site-wide total multiplied by the ratio of pit ore extracted vs site-wide ore extracted
	Total material (ore+waste rock+overburden) blasted in 2030	tonnes/year	1,566,185	Provided by Agnico Eagle
F Zone 01	Amount of emulsion for blasting product used in 2030	kg/year	953,082	Estimated using the site-wide rate multiplied by the ratio of pit ore extracted vs site-wide ore extracted
	Number of blasts in 2030	blasts/year	52	Estimated using the site-wide total multiplied by the ratio of pit ore extracted vs site-wide ore extracted
	Total material (ore+waste rock+overburden) blasted in 2030	tonnes/year	2,534,645	Provided by Agnico Eagle

Table C2.4-1: Surface Blasting, Calculation Inputs

Notes:

^a For simplicity, all Pump 01 and Pump 03 blasts were modelled at the Pump 03 pit.

2.5 Road Sources

CALPUFF road sources were used to model tailpipe emissions (NO_x and SO₂) along specific roads from specific equipment categories and activities.

Mobile equipment information for OnRoad and NonRoad equipment for both the surface and underground fleets was provided by Agnico Eagle, including details of equipment type, equipment model number, active status and usage area. For simplicity and with the aim of being slightly conservative, all OnRoad and NonRoad mobile units were assumed to have a 2020 engine manufacture year; because the modelled year of emissions was 2030, this means that all units were assumed to be 10 years old.

Tailpipe emission factors for OnRoad and NonRoad equipment are described in Sections 2.5.1 and 2.5.2.

2.5.1 OnRoad Equipment Emission Factors

OnRoad vehicle emissions were calculated using the MOVES2014b emissions model (US EPA 2018), using the OnRoad module. All model configuration parameters are listed in Table C2.5-1 for the OnRoad module run.

Section	Sub-section	Values Used	Comments
Scale	Model	∎ OnRoad	
	Domain/Scale	National	
	Calculation Type	Inventory	
Time Spans	Time Aggregation Level	Annual	
	Years	■ 2030	This represents the MOVES2014t simulation year, not the engine's year of manufacture.
	Months	a All	
	Days	All	
	Hours	All	
Geographic	Region	County	
Bounds	Selections	Alaska – Yukon-Koyukuk Census Area	
On Road Vehicle Equipment	Selections	 <u>Diesel Fuel:</u> Combination and single unit longhaul and short-haul trucks Light commercial trucks Passenger trucks 	Only emission factors for gas passenger trucks, diesel light commercial trucks, and diesel single unit long-haul trucks were used for the emissions inventory.
		Gasoline Fuel: ■ Passenger trucks	
Road Type	Selected Road Types	 Off-Network Rural Unrestricted Access 	Only rural unrestricted access roads (i.e., rural non-highway) were used for the emissions inventory.

Table C2.5-1: MOVES2014b OnRoad Module Setup

Section	Sub-section	Values Used	Comments
Pollutants and Processes	Selections	Running Exhaust emission process: Oxides of Nitrogen (NO_X) Nitrogen Oxide (NO) Nitrogen Dioxide (NO₂) Sulfur Dioxide (SO₂) Total Energy Consumption Crankcase Running Exhaust emission process: Oxides of Nitrogen (NO_X) Nitrogen Oxide (NO) Nitrogen Dioxide (NO₂) Sulfur Dioxide (NO) Nitrogen Dioxide (NO₂) Sulfur Dioxide (SO₂) 	The following species were used in the emissions inventory: NOx; and SO ₂ .
		Extended Idle Exhaust emission process: Oxides of Nitrogen (NO _X) Nitrogen Oxide (NO) Sulfur Dioxide (NO ₂) Sulfur Dioxide (SO ₂) Total Energy Consumption <u>Auxiliary Power Exhaust emission</u> process: Oxides of Nitrogen (NO _X) Nitrogen Oxide (NO) Nitrogen Dioxide (NO ₂) Sulfur Dioxide (SO ₂) Total Energy Consumption	
Manage Input Data Sets	Database	Left blank	This is left blank so that the model uses the default National inventory input database.
Rate of Progress	Compute Rate-of-Progress Emissions?	Unchecked	
General Output	Units	GramsJoulesKilometres	
	Activity	All options checked	
Output Emission Details	Always	Time: YearLocation: CountyPollutant: Checked	
	On Road/ Off Road	 All available options checked except regulatory class 	
	For All Vehicle/ Equipment Categories	 All available options checked 	
Advanced Performance Features	Selections	All default values (unchecked)	

Section	Sub-section	Values Used	Comments
Post Processing	Data Included	 MOVES2014b output includes the following for all vehicles, for 1 year: Vehicle engine years 2000 to 2030 Total distance travelled Total source hours operating Road type usage Total emissions for each pollutant (grams) 	Emission factors for each vehicle type and each engine year were calculated in grams per vehicle kilometre travelled (VKT). These values were then applied to specific OnRoad vehicle types and specific engine years from the Meliadine Extension mobile equipment fleet. This provides an emission factor (g/VKT) for each OnRoad vehicle that incorporates engine age and wear.

The engine load factors and utilization rates for OnRoad equipment are incorporated into the OnRoad module and the emission rate factor output is in units of grams per vehicle kilometre travelled (g/VKT).

The OnRoad equipment that was modelled with CALPUFF road sources included:

- pickup trucks;
- transport buses (assigned as light commercial trucks in MOVES2014b output); and
- transport and fuel trucks (assigned as single unit long-haul trucks in MOVES2014b output).

2.5.2 NonRoad Equipment Emission Factors

NonRoad vehicle emissions were calculated using the MOVES2014b emissions model, using the NonRoad module. All model configuration parameters are listed in Table C2.5-2 for the NonRoad module run.

Section	Sub-section	Values Used	Comments
Scale	Model	NonRoad	
	Domain/Scale	National	
	Calculation Type	Inventory	
Time Spans	Time Aggregation Level	■ Day	Can't change.
	Years	= 2030	This represents the MOVES2014b simulation year, not the engine's year of manufacture.
	Months	∎ May	Chosen to represent average annual climate conditions.
	Days	Weekdays	Only the emission rate factor is of interest (grams/second) so this selection does not matter.
	Hours	∎ n/a	Can't change.
Geographic	Region	County	
Bounds	Selections	Alaska – Yukon-Koyukuk Census Area	

Table C2.5-2: MOVES2014b NonRoad Module S	Setup
---	-------

Section	Sub-section	Values Used	Comments
NonRoad Vehicle Equipment	Selections	NonRoad Diesel Fuel: Commercial sector Construction sector Industrial sector Underground mining sector	All of the Meliadine Extension equipment inventory falls into these sectors.
Road Type	Selected Road Types	NonRoad	Can't change.
Pollutants and Processes	Selections	Running exhaust emission process: Oxides of Nitrogen (NOx) Sulfur Dioxide (SO ₂)	The following species were used in the emissions inventory: NOx; and SO ₂ .
Manage Input Data Sets	Database	Left blank	This is left blank so that the model uses the default National inventory input database.
Rate of Progress	Compute Rate-of-Progress Emissions?	Unchecked	
General Output	Units	GramsJoulesKilometres	
Output Emission Details	Always	Time: 24-Hour DayLocation: CountyPollutant: Checked	
	On Road/Off Road	All available options checked	
	For All Vehicle/ Equipment Categories	 All available options checked except Fuel Subtype 	
Advanced Performance Features	Selections	All default values (unchecked)	
Post Processing	Data Included	 MOVES2014b output includes the following for all mobile equipment: Equipment type Horsepower bin ranges Vehicle engine years 1981 to 2030. Not all equipment types and horsepower bins include all years Total emission rate factors for each pollutant (grams per horsepower per hour) 	The emission rate factors were applied to specific NonRoad equipment types, specific horsepower bins and specific engine years from the Meliadine Extension mobile equipment fleet. Load factors and equipment utilization factors (operating hours per year) were also applied. The result is emission factors in units of g/s for each piece of NonRoad equipment.

The only NonRoad equipment that was modelled as CALPUFF road sources is the fleet of off highway mine haul trucks.

The non-road equipment that was modelled as CALPUFF road sources included:

- mine haul trucks;
- loaders;
- backhoes;
- bulldozers;
- skidsteers;
- forklifts;
- telehandlers;
- manlifts; and
- cranes.

Unlike the OnRoad module, the engine load factors and equipment utilization rates for NonRoad equipment are not incorporated in the emission rate factor output (g/s units). Engine load factor ratings for NonRoad equipment were taken from US EPA *Median Life, Annual Activity, and Load Factor Values for Nonroad Engine Emissions Modeling* (2010). The utilization rate (operating hours per year) for all mobile units was provided by Agnico Eagle.

2.5.3 Tailpipe Emissions

Tailpipe emission factors for OnRoad equipment (g/VKT) and NonRoad equipment (g/s) were converted to the same units of g/VKT. NonRoad equipment emission rates in g/VKT were calculated by:

Tailpipe emission factors for OnRoad equipment (g/VKT) and NonRoad equipment (g/s) were converted to the same units of g/VKT. NonRoad equipment emission factors in g/VKT were calculated by:

$$EF\left(\frac{g}{VKT}\right) = vehicle\ emission\ rate\ \left(\frac{g}{s}\right) * \frac{length\ of\ each\ road\ transit\ (km)}{vehicle\ speed\ (\frac{km}{h})} * \frac{1}{length\ of\ each\ road\ transit\ (km)}$$

Tailpipe emission rates for the CALUFF road source (g/s/m) were then calculated for each modelled road segment by:

Road source emission rate
$$\left(\frac{g}{s m}\right)$$

= vehicle emission rate $\left(\frac{g}{VKT}\right)$ * road segment length (km)
* number of one way vehicle transits per hour * time unit conversion * distance unit conversion

The modelled road segments, distances, speeds, and equipment work areas are listed in Table C2.5-3, and references are listed in Table C2.5-4.

For haul truck traffic, the emissions for each road segment were calculated based on the known amount of material (overburden, tailings, waste rock, salt rock, and ore) transported to different areas of the mine (e.g., crusher location and waste rock locations). Table C2.5-5 summarizes the 2030 material movement amounts based on Agnico Eagle's life of mine data.

Table C2.5-3: Road Source Characteristics

Road Segment Description	Equipment Work Area	Speed (km/h)	Approx. Distance Travelled, 1-Way Trip (km)	Time for a Vehicle to Travel a 1-Way Trip (s)
Wesmeg WN01 pit to the crusher + Wesmeg WN01	Industrial	20	2.5	447
pit to the closest WRSF	Pit	40		223
Pump 01 pit to the crusher + Pump 01 pit to the	Industrial	20	3.0	535
closest WRSF + Pump 03 pit to the crusher	Pit	40		267
F Zone 01 pit to the crusher	Industrial	20	4.0	718
	Pit	40		359
F Zone 01 pit to the closest WRSF	Industrial	20	1.3	239
	Pit	40		120
Pump Underground to the Pump Salt Rock Pile	UG+SURF	20	0.7	128
Discovery Salt Rock Pile to Discovery Underground	UG+SURF	20	0.6	102
Tiriganiaq, Wesmeg, and Wesmeg WN01 Undergrounds to the crusher + Wesmeg and Wesmeg WN01 Undergrounds to WRSF1	UG+SURF	20	1.1	202
Surface Tailings from dewatering (church) to TSF +	Industrial	20	0.8	144
Tiriganiaq Underground to WRSF3	Pit	40		72
	UG+SURF	20		144
Pump Underground to the crusher + TSF to Pump Underground	UG+SURF	20	4.3	771
Pump 03 pit to the closest WRSF	Industrial	20	0.5	99
	Pit	40		49
Discovery Underground to the crusher	UG+SURF	20	19.4	3,486
All Weather Access Road (AWAR)	AWAR	40	31.9	2,871

Table C2.5-4: Road Source Characteristics References

Road Segment Description	Equipment Work Area	Speed (km/h)	Approx. Distance Travelled, 1-Way Trip (km)	Time for a Vehicle to Travel a 1-Way Trip (s)
Wesmeg WN01 pit to the crusher +	Industrial	Provided by Agnico Eagle	Measured from drawings	Calculated from speed and road length
Wesmeg WN01 pit to the closest WRSF	Pit	Provided by Agnico Eagle	provided by Agnico Eagle	Calculated from speed and road length
Pump 01 pit to the crusher + Pump 01 pit	Industrial	Provided by Agnico Eagle	Measured from drawings	Calculated from speed and road length
to the closest WRSF + Pump 03 pit to the crusher	Pit	Provided by Agnico Eagle	provided by Agnico Eagle	Calculated from speed and road length
F Zone 01 pit to the crusher	Industrial	Provided by Agnico Eagle	Measured from drawings	Calculated from speed and road length
	Pit	Provided by Agnico Eagle	provided by Agnico Eagle	Calculated from speed and road length
F Zone 01 pit to the closest WRSF	Industrial	Provided by Agnico Eagle	Measured from drawings	Calculated from speed and road length
	Pit	Provided by Agnico Eagle	provided by Agnico Eagle	Calculated from speed and road length
Pump Underground to the Pump Salt Rock Pile	UG+SURF	Provided by Agnico Eagle	Measured from drawings provided by Agnico Eagle	Calculated from speed and road length
Discovery Salt Rock Pile to Discovery Underground	UG+SURF	Provided by Agnico Eagle	Measured from drawings provided by Agnico Eagle	Calculated from speed and road length
Tiriganiaq, Wesmeg, and Wesmeg WN01 Undergrounds to the crusher + Wesmeg and Wesmeg WN01 Undergrounds to WRSF1	UG+SURF	Provided by Agnico Eagle	Measured from drawings provided by Agnico Eagle	Calculated from speed and road length
Surface Tailings from dewatering	Industrial	Provided by Agnico Eagle	Measured from drawings	Calculated from speed and road length
(church) to TSF + Tiriganiaq	Pit	Provided by Agnico Eagle	provided by Agnico Eagle	Calculated from speed and road length
Underground to WRSF3	UG+SURF	Provided by Agnico Eagle		Calculated from speed and road length
Pump Underground to the crusher + TSF to Pump Underground	UG+SURF	Provided by Agnico Eagle	Measured from drawings provided by Agnico Eagle	Calculated from speed and road length
Pump 03 pit to the closest WRSF	Industrial	Provided by Agnico Eagle	Measured from drawings	Calculated from speed and road length
	Pit	Provided by Agnico Eagle	provided by Agnico Eagle	Calculated from speed and road length
Discovery Underground to the crusher	UG+SURF	Provided by Agnico Eagle	Measured from drawings provided by Agnico Eagle	Calculated from speed and road length
All Weather Access Road (AWAR)	AWAR	Provided by Agnico Eagle	Measured from drawings provided by Agnico Eagle	Calculated from speed and road length

Table C2.5-5: 2030 Material Movement (tonnes)

Location	Ore from Location	Waste Rock from Location	Overburden from Pit	Material to/from Salt Rock Piles	Waste Rock Required for Backfill Underground	Total Tailings Stored in TSF	Tailings Returned Underground as Backfill
Wesmeg WN01 Pit	1,067,839	6,804,723	0	N/A	N/A	N/A	N/A
Pump 01 Pit	60,556	367,926	244,113	N/A	N/A	N/A	N/A
Pump 03 Pit	80,453	488,816	324,321	N/A	N/A	N/A	N/A
F Zone 01 Pit	18,344	652,309	1,863,992	N/A	N/A	N/A	N/A
Salt Rock Pile 1 (Pump)	N/A	N/A	N/A	479,970	N/A	N/A	N/A
Salt Rock Pile 3 (Disc.)	N/A	N/A	N/A	-273,163	N/A	N/A	N/A
Tiriganiaq Underground	1,837,408	729,082	N/A	N/A	300,906	N/A	N/A
Pump Underground	45,465	479,970	N/A	N/A	0	N/A	N/A
Discovery Underground	421,592	0	N/A	N/A	273,163	N/A	N/A
Site Wide (Tailings)	N/A	N/A	N/A	N/A	N/A	2,339,819	762,681

3. **REFERENCES**

- Consulair. 2018. Atmospheric Emission Characterisation Report, Domestic Waste Incinerator Meliadine Division: November 2020. Prepared for Agnico Eagle Mines Limited by Consulair.
- Dyno Nobel Inc. 2019. *Memo Re: Emission Factors for Dyno Nobel Titan 7000 RU Emulsion*. July 14, 2019. Provided to Agnico Eagle Mines Limited by Dyno Nobel Inc.
- US EPA. 2010. Median Life, Annual Activity, and Load Factor Values for Nonroad Engine Emissions Modeling. <u>https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100058Z.txt</u> (accessed October 2021).
- US EPA. 2018. *MOVES2014b: Motor Vehicle Emission Simulator (December 2018)*. US Environmental Protection Agency. <u>https://www.epa.gov/moves/moves-versions-limited-current-use</u> (accessed October 2021).
- Wärtsilä Finland Oy. 2018. *Emission Measurement Report, Meliadine Project: January 29, 2018.* Prepared for Agnico Eagle Mines Limited by Wärtsilä Finland Oy.

APPENDIX D AIR EMISSIONS INVENTORY

- Appendix D-1 Point Sources, Characteristics and Air Emissions
- Appendix D-2 Underground Non-road Vehicle Fleet, Characteristics and Air Emissions
- Appendix D-3 Underground On-road Vehicle Fleet, Characteristics and Air Emissions
- Appendix D-4 Surface Non-road Vehicle Fleet, Characteristics and Air Emissions
- Appendix D-5 Surface On-road Vehicle Fleet, Characteristics and Air Emissions
- Appendix D-6 Blasting, Characteristics and Air Emissions
- Appendix D-7 Roads, Characteristics and Air Emissions

Appendix D-1: Point Sources, Characteristics and Air Emissions

Stack Description	UTM Coordinates, Zone 15V		Base Elevation	Emission Release	Stack Tip Inside	Stack Tip Exit	Stack Exit Temperature	Emissio (g	on Rate /s)
	Easting (m)	Northing (m)	(masl)	Height (Stack Height) (m)	Diameter (m)	Velocity (m/s)	(K)	SO ₂	NO _x
Site Generator 1 of 4 (#374 aka Unit 1) ^(a)	539203	6990014	65.6	40.0	1.02	16.7	505.2	1.6E+01	4.6E-03
Site Generator 2 of 4 (#376 aka Unit 3) ^(b)	539200	6990022	65.7	40.0	1.02	16.0	470.2	1.6E+01	4.6E-03
Site Generator 3 of 4 (#377 aka Unit 4) (c)	539194	6990035	65.8	40.0	1.02	17.0	498.2	1.6E+01	4.6E-03
Site Generator 4 of 4 (#378 aka Unit 5) ^(d)	539190	6990045	65.9	40.0	1.02	18.0	509.2	1.7E+01	4.6E-03
Incinerator	539393	6989830	64.2	11.1	0.80	8.6	1172.2	2.2E-01	2.4E-02
gen set 500 kW at 600 V, Discovery	553721	6981510	61.4	2.0	0.20	21.7	791.4	1.2E+00	4.4E-04
gen set 500 kW at 600 V, Pump	540416	6986160	59.5	2.0	0.20	21.7	791.4	1.2E+00	4.4E-04
gen set 500 kW at 600 V, F Zone	542412	6985960	57.7	2.0	0.20	21.7	791.4	1.2E+00	4.4E-04
VR-W, mobile emissions, ventilation raise at Wesmeg	540687	6988138	63.0	5.0	4.00	6.5	280.9	6.2E-03	1.6E-04
VR-T, mobile emissions, ventilation raise at Tiriganiaq	539466	6987929	61.9	5.0	4.00	6.5	280.9	3.3E-03	8.4E-05
VR-WN, mobile emissions, ventilation raise at Wesmeg WN01	538844	6987937	56.8	5.0	4.00	6.5	280.9	6.8E-04	1.8E-05
VR-PW, mobile emissions, west ventilation raise at Pump	539455	6986656	57.0	5.0	4.00	6.5	280.9	1.4E-02	3.7E-04
VR-DE, mobile emissions, east ventilation raise at Discovery	554713	6981436	65.7	5.0	4.00	6.5	280.9	3.1E-02	8.1E-04
PRT-T mobile emissions, new portal near Tiriganiaq	539937	6988798	64.7	1.0	5.00	0.7	280.9	1.0E-02	2.6E-04
PRT-P, mobile emissions, portal at Pump	540440	6986209	59.9	1.0	5.00	0.7	280.9	1.4E-02	3.7E-04
PRT-D, mobile emissions, portal at Discovery	554068	6981483	62.5	1.0	5.00	0.7	280.9	3.1E-02	8.1E-04
BL-VR-T; blasting, Tiriganiaq Underground, vent raise ^(e)	539466	6987929	61.9	5.0	4.00	6.5	280.9	2.8E-01	0

Stack Description	UTM Coordinates, Zone 15V		Base Elevation	Emission Release	Stack Tip Inside	Stack Tip Exit	Stack Exit Temperature	Emission Rate (g/s)	
	Easting (m)	Northing (m)	(masl)	Height (Stack Height) (m)	Diameter (m)	Velocity (m/s)	(K)	SO ₂	NOx
BL-VR-PW; blasting, Pump Underground, vent raise ^(e)	539455	6986656	57.0	5.0	4.00	6.5	280.9	2.8E-01	0
BL-VR-DE; blasting, Discovery Underground, vent raise ^(e)	554713	6981436	65.7	5.0	4.00	6.5	280.9	2.8E-01	0
BL-PRT-T; blasting, Tiriganiaq Underground, portal ^(e)	539937	6988798	64.7	1.0	5.00	0.7	280.9	2.8E-01	0
BL-PRT-P; blasting, Pump Underground, portal ^(e)	540440	6986209	59.9	1.0	5.00	0.7	280.9	2.8E-01	0
BL-PRT-D; blasting, Discovery Underground, portal ^(e)	554068	6981483	62.5	1.0	5.00	0.7	280.9	2.8E-01	0

Notes:

^(a) Source active for Scenario 1 only.

^(b) Source active for Scenario 1 only.

^(c) Source active for Scenarios 1 and 2 only.

^(d) Source active for Scenarios 1, 2, and 3.

^(e) The underground blasting sources are co-located with the vent raises and portals indicated. They were modelled as separate sources because mobile emissions were assumed to be continuous, whereas blasting emissions are only active at certain times.

Equipment	Equipment	Fuel	Power	Load Factor	Operating	Emission	Rate (g/s)
Category	Work Area	Туре	(hp)	(fraction of power)	Hours per Year	NOx	SO ₂
Compressor	UG	Diesel	44	0.43	3504	5.3E-03	8.1E-06
Compressor	UG	Diesel	155	0.43	3504	1.2E-03	2.6E-05
Compressor	UG	Diesel	125	0.43	7300	2.1E-03	4.3E-05
Compressor	UG	Diesel	125	0.43	7300	2.1E-03	4.3E-05
Compressor	UG	Diesel	580	0.43	1475	1.3E-03	4.1E-05
Compressor	UG	Diesel	305	0.43	105	4.9E-05	1.5E-06
Concrete	UG+SURF	Diesel	275	0.59	364	2.1E-04	6.6E-06
Concrete	UG+SURF	Diesel	138	0.43	94	3.0E-05	6.2E-07
Concrete	UG+SURF	Diesel	160	0.43	753	2.8E-04	5.7E-06
Emulsion	UG+SURF	Diesel	275	0.43	3504	1.5E-03	4.6E-05
Emulsion	UG+SURF	Diesel	275	0.43	3504	1.5E-03	4.6E-05
Emulsion	UG+SURF	Diesel	275	0.59	1924	1.1E-03	3.5E-05
Emulsion	UG+SURF	Diesel	275	0.59	1635	9.4E-04	3.0E-05
Emulsion	UG+SURF	Diesel	275	0.59	940	5.4E-04	1.7E-05
Haul Truck	UG+SURF	Diesel	409	0.59	3506	3.0E-03	9.5E-05
Haul Truck	UG+SURF	Diesel	409	0.59	2175	1.9E-03	5.9E-05
Haul Truck	UG+SURF	Diesel	409	0.59	4101	3.5E-03	1.1E-04
Haul Truck	UG+SURF	Diesel	409	0.59	3506	3.0E-03	9.5E-05
Haul Truck	UG+SURF	Diesel	691	0.59	3192	4.6E-03	1.5E-04
Haul Truck	UG+SURF	Diesel	691	0.59	3908	5.6E-03	1.8E-04
Haul Truck	UG+SURF	Diesel	691	0.59	3389	4.9E-03	1.5E-04
Haul Truck	UG+SURF	Diesel	691	0.59	3576	5.2E-03	1.6E-04
Haul Truck	UG+SURF	Diesel	691	0.59	3746	5.4E-03	1.7E-04
Haul Truck	UG+SURF	Diesel	691	0.59	3559	5.1E-03	1.6E-04
Haul Truck	UG+SURF	Diesel	691	0.59	4061	5.9E-03	1.9E-04
Haul Truck	UG+SURF	Diesel	691	0.59	4468	6.4E-03	2.0E-04
Haul Truck	UG+SURF	Diesel	691	0.59	3503	5.1E-03	1.6E-04
Haul Truck	UG+SURF	Diesel	691	0.59	2675	3.9E-03	1.2E-04
Haul Truck	UG+SURF	Diesel	691	0.59	2887	4.2E-03	1.3E-04
Haul Truck	UG+SURF	Diesel	691	0.59	3559	5.1E-03	1.6E-04
Haul Truck	UG+SURF	Diesel	691	0.59	3559	5.1E-03	1.6E-04
Haul Truck	UG+SURF	Diesel	691	0.59	3559	5.1E-03	1.6E-04

Appendix D-2: Underground Non-road Vehicle Fleet, Characteristics and Air Emissions

Equipment	Equipment	Fuel	Power	Load Factor	Operating	Emission	Rate (g/s)
Category	Work Area	Туре	(hp)	(fraction of power)	Hours per Year	NOx	SO ₂
Men Carrier & Cassette Truck	UG	Diesel	275	0.43	3597	1.5E-03	4.7E-05
Men Carrier & Cassette Truck	UG	Diesel	275	0.43	372	1.6E-04	4.9E-06
Men Carrier & Cassette Truck	UG	Diesel	275	0.43	1632	6.8E-04	2.1E-05
Men Carrier & Cassette Truck	UG	Diesel	275	0.43	2090	8.7E-04	2.7E-05
Men Carrier & Cassette Truck	UG	Diesel	148	0.43	2555	8.7E-04	1.8E-05
Men Carrier & Cassette Truck	UG	Diesel	148	0.43	1796	6.1E-04	1.3E-05
Men Carrier & Cassette Truck	UG	Diesel	275	0.43	1913	8.0E-04	2.5E-05
Men Carrier & Cassette Truck	UG	Diesel	275	0.43	1913	8.0E-04	2.5E-05
Men Carrier & Cassette Truck	UG	Diesel	275	0.43	1913	8.0E-04	2.5E-05
Scissor Lift	UG	Diesel	138	0.21	39	6.0E-06	1.5E-07
Scissor Lift	UG	Diesel	138	0.21	1901	2.9E-04	7.2E-06
Scissor Lift	UG	Diesel	138	0.21	2551	3.9E-04	9.7E-06
Scissor Lift	UG	Diesel	138	0.21	1875	2.9E-04	7.1E-06
Scissor Lift	UG	Diesel	138	0.21	1671	2.6E-04	6.3E-06
Scissor Lift	UG	Diesel	138	0.21	348	5.4E-05	1.3E-06
Scissor Lift	UG	Diesel	138	0.21	1649	2.5E-04	6.2E-06
Scissor Lift	UG	Diesel	138	0.21	2174	3.4E-04	8.2E-06
Scissor Lift	UG	Diesel	138	0.21	2551	3.9E-04	9.7E-06
Scissor Lift	UG	Diesel	138	0.21	348	5.4E-05	1.3E-06
Scissor Lift	UG	Diesel	138	0.21	1671	2.6E-04	6.3E-06
Scoop	UG	Diesel	343	0.59	2740	2.0E-03	6.2E-05
Scoop	UG	Diesel	343	0.59	1812	1.3E-03	4.1E-05
Scoop	UG	Diesel	343	0.59	2463	1.8E-03	5.6E-05
Scoop	UG	Diesel	343	0.59	2303	1.7E-03	5.2E-05
Scoop	UG	Diesel	250	0.59	238	1.2E-04	3.9E-06
Scoop	UG	Diesel	165	0.59	1307	6.8E-04	1.4E-05
Scoop	UG	Diesel	369	0.59	2707	2.1E-03	6.6E-05
Scoop	UG	Diesel	369	0.59	3479	2.7E-03	8.5E-05
Scoop	UG	Diesel	369	0.59	3095	2.4E-03	7.5E-05

Equipment	Equipment	Fuel	Power	Load Factor	Operating	Emission	Rate (g/s)
Category	Work Area	Туре	(hp)	(fraction of power)	Hours per Year	NOx	SO ₂
Scoop	UG	Diesel	416	0.59	3795	3.3E-03	1.0E-04
Scoop	UG	Diesel	416	0.59	3895	3.4E-03	1.1E-04
Service Vehicle	UG	Diesel	25	0.21	550	3.4E-04	5.8E-07
Service Vehicle	UG	Diesel	246	0.59	754	3.9E-04	1.2E-05
Service Vehicle	UG	Diesel	216	0.59	3622	1.6E-03	5.2E-05
Service Vehicle	UG	Diesel	216	0.59	3622	1.6E-03	5.2E-05
Service Vehicle	UG	Diesel	74	0.59	1488	5.3E-03	8.1E-06
Service Vehicle	UG	Diesel	102	0.59	1484	4.8E-04	1.0E-05
Service Vehicle	UG	Diesel	128	0.43	2044	6.0E-04	1.2E-05
Service Vehicle	UG	Diesel	128	0.43	3331	9.8E-04	2.0E-05
Service Vehicle	UG	Diesel	128	0.43	3331	9.8E-04	2.0E-05
Telehandler	UG+SURF	Diesel	125	0.21	974	1.4E-04	3.3E-06
Telehandler	UG+SURF	Diesel	142	0.21	678	1.1E-04	2.6E-06
Telehandler	UG+SURF	Diesel	125	0.21	1270	1.8E-04	4.4E-06
Telehandler	UG+SURF	Diesel	125	0.21	974	1.4E-04	3.3E-06
Tractor	UG	Diesel	106	0.21	696	8.2E-05	2.0E-06
Tractor	UG	Diesel	106	0.21	1325	1.6E-04	3.8E-06
Tractor	UG	Diesel	86	0.21	141	6.9E-05	3.7E-07
Tractor	UG	Diesel	95	0.21	702	3.8E-04	2.0E-06
Tractor	UG	Diesel	95	0.21	253	1.4E-04	7.3E-07
Tractor	UG	Diesel	95	0.21	302	1.6E-04	8.8E-07
Tractor	UG	Diesel	86	0.21	500	2.4E-04	1.3E-06
Tractor	UG	Diesel	106	0.21	2301	2.7E-04	6.7E-06
Tractor	UG	Diesel	106	0.21	1781	2.1E-04	5.2E-06
Tractor	UG	Diesel	106	0.21	788	9.3E-05	2.3E-06
Tractor	UG	Diesel	106	0.21	618	7.3E-05	1.8E-06
Tractor	UG	Diesel	106	0.21	853	1.0E-04	2.5E-06
Tractor	UG	Diesel	106	0.21	1035.6	1.2E-04	3.0E-06
Tractor	UG	Diesel	100	0.21	518	5.8E-05	1.4E-06
Tractor	UG	Diesel	106	0.21	512	6.1E-05	1.5E-06
Tractor	UG	Diesel	106	0.21	454	5.4E-05	1.3E-06
Tractor	UG	Diesel	106	0.21	2331	2.8E-04	6.8E-06
Tractor	UG	Diesel	106	0.21	2048	2.4E-04	5.9E-06
Tractor	UG	Diesel	106	0.21	1800	2.1E-04	5.2E-06
Tractor	UG	Diesel	106	0.21	1446	1.7E-04	4.2E-06
Tractor	UG	Diesel	106	0.21	1979	2.3E-04	5.7E-06

Equipment	Equipment	Fuel	Power	Load Factor	Operating	Emission	Rate (g/s)
Category	Work Area	Туре	(hp)	(fraction of power)	Hours per Year	NOx	SO ₂
Tractor	UG	Diesel	106	0.21	2067	2.4E-04	6.0E-06
Tractor	UG	Diesel	68	0.21	662	7.6E-04	1.4E-06
Tractor	UG	Diesel	68	0.21	1547	1.8E-03	3.2E-06
Tractor	UG	Diesel	106	0.21	2097	2.5E-04	6.1E-06
Tractor	UG	Diesel	106	0.21	2553	3.0E-04	7.4E-06
Tractor	UG	Diesel	106	0.21	294	3.5E-05	8.5E-07
Tractor	UG	Diesel	106	0.21	1705	2.0E-04	4.9E-06
Tractor	UG	Diesel	106	0.21	962	1.1E-04	2.8E-06
Tractor	UG	Diesel	106	0.21	147	1.7E-05	4.3E-07
Tractor	UG	Diesel	106	0.21	2048	2.4E-04	5.9E-06
Tractor	UG	Diesel	106	0.21	2048	2.4E-04	5.9E-06
Tractor	UG	Diesel	106	0.21	2048	2.4E-04	5.9E-06
Tractor	UG	Diesel	106	0.21	1979	2.3E-04	5.7E-06
Tractor	UG	Diesel	106	0.21	1979	2.3E-04	5.7E-06
Tractor	UG	Diesel	106	0.21	1979	2.3E-04	5.7E-06

Equipment Category	Equipment Work Area	Fuel Type	Make and Model	Mine Unit #	km/year		on Rate km)
						NOx	SO ₂
Men Carrier & Cassette Truck	UG+SURF	Diesel	Toyota HZJ79	65VSE15	51,905	2.0E-01	2.5E-03
Men Carrier & Cassette Truck	UG+SURF	Diesel	Toyota HZJ79	65VSE17	101,150	2.0E-01	2.5E-03
Men Carrier & Cassette Truck	UG+SURF	Diesel	Toyota HZJ79	65VSE18	80,885	2.0E-01	2.5E-03
Men Carrier & Cassette Truck	UG+SURF	Diesel	Toyota HZJ79	65VSE30	68,110	2.0E-01	2.5E-03
Men Carrier & Cassette Truck	UG+SURF	Diesel	Toyota HZJ79	65VSE31	115,395	2.0E-01	2.5E-03
Men Carrier & Cassette Truck	UG+SURF	Diesel	Toyota HZJ79	65VSE32	27,545	2.0E-01	2.5E-03
Men Carrier & Cassette Truck	UG+SURF	Diesel	Toyota HZJ79	65VSE33	105,210	2.0E-01	2.5E-03
Men Carrier & Cassette Truck	UG+SURF	Diesel	Toyota HZJ79	65VSE34	30,590	2.0E-01	2.5E-03
Men Carrier & Cassette Truck	UG+SURF	Diesel	Toyota HZJ79	65VSE38	55,615	2.0E-01	2.5E-03
Men Carrier & Cassette Truck	UG+SURF	Diesel	Toyota HZJ79	65VSE18	80,885	2.0E-01	2.5E-03
Men Carrier & Cassette Truck	UG+SURF	Diesel	Toyota HZJ79	65VSE18	80,885	2.0E-01	2.5E-03
Men Carrier & Cassette Truck	UG+SURF	Diesel	Toyota HZJ79	65VSE30	68,110	2.0E-01	2.5E-03
Men Carrier & Cassette Truck	UG+SURF	Diesel	Toyota HZJ79	65VSE30	68,110	2.0E-01	2.5E-03
Men Carrier & Cassette Truck	UG+SURF	Diesel	Toyota HZJ79	65VSE30	68,110	2.0E-01	2.5E-03
Men Carrier & Cassette Truck	UG+SURF	Diesel	Toyota HZJ79	65VSE30	68,110	2.0E-01	2.5E-03
Service Vehicle	UG+SURF	Diesel	Toyota HZJ79	65VSE14	2,415	2.0E-01	2.5E-03

Appendix D-3: Underground On-road Vehicle Fleet, Characteristics and Air Emissions

Appendix D-4: Surface Non-road Vehicle Fleet, Characteristics and Air Emissions

Equipment	Equipment	Fuel	Power	Load Factor	Operating	Emission Rate (g/s)	
Category	Work Area	Туре	(hp)	(fraction of power)	Hours per Year	NOx	SO ₂
Backhoe	PIT	Diesel	93	0.21	1022	5.4E-04	2.9E-06
Backhoe	PIT	Diesel	117	0.21	1244	1.6E-04	4.0E-06
Backhoe	PIT	Diesel	242	0.21	5583	1.0E-03	3.7E-05
Backhoe	PIT	Diesel	23	0.21	1133	6.5E-04	1.1E-06
Compactor	PIT	Diesel	156	0.59	3189	1.6E-03	3.3E-05
Compactor	PIT	Diesel	156	0.59	3889	1.9E-03	4.0E-05
Container Handler	INDUSTRIAL	Diesel	365	0.43	2496	1.4E-03	4.3E-05
Container Handler	INDUSTRIAL	Diesel	365	0.43	2879	1.6E-03	5.0E-05
Crane	INDUSTRIAL	Diesel	100	0.43	1000	1.2E-03	5.3E-06
Crane	INDUSTRIAL	Diesel	65	0.43	1000	2.3E-03	3.4E-06
Crane	INDUSTRIAL	Diesel	330	0.43	1000	5.0E-04	1.6E-05
Crane	INDUSTRIAL	Diesel	320	0.43	1000	4.9E-04	1.5E-05
Crane	INDUSTRIAL	Diesel	340	0.43	1000	5.2E-04	1.6E-05
Dozer	PIT	Diesel	258	0.59	4248	2.3E-03	7.2E-05
Dozer	PIT	Diesel	125	0.59	5113	2.0E-03	4.2E-05
Forklift	INDUSTRIAL	Diesel	51	0.59	2524	6.2E-03	9.5E-06
Forklift	INDUSTRIAL	Diesel	46	0.59	2524	5.5E-03	8.6E-06
Forklift	INDUSTRIAL	Diesel	86	0.59	2524	3.5E-03	1.6E-05
Grader	AWAR	Diesel	237	0.43	3867	1.4E-03	4.4E-05
Haul Truck	PIT	Diesel	476	0.59	6344	6.3E-03	2.0E-04
Haul Truck	PIT	Diesel	476	0.59	7181	7.1E-03	2.3E-04
Haul Truck	PIT	Diesel	476	0.59	7845	7.8E-03	2.5E-04
Haul Truck	PIT	Diesel	476	0.59	7836	7.8E-03	2.5E-04
Haul Truck	PIT	Diesel	476	0.59	6210	6.2E-03	2.0E-04
Heater Trailer	INDUSTRIAL	Diesel	19	0.43	1000	9.7E-04	1.4E-06
Heater Trailer	INDUSTRIAL	Diesel	19	0.43	1000	9.7E-04	1.4E-06
Heater Trailer	INDUSTRIAL	Diesel	19	0.43	1000	9.7E-04	1.4E-06
Heater Trailer	INDUSTRIAL	Diesel	19	0.43	1000	9.7E-04	1.4E-06
Heater Trailer	INDUSTRIAL	Diesel	19	0.43	1000	9.7E-04	1.4E-06
Loader	PIT	Diesel	230	0.59	2610	1.3E-03	4.0E-05
Loader	PIT	Diesel	230	0.59	2678	1.3E-03	4.1E-05
Loader	PIT	Diesel	425	0.59	4467	4.0E-03	1.3E-04
Loader	PIT	Diesel	102	0.59	1146	3.7E-04	7.7E-06
Loader	PIT	Diesel	580	0.59	4937	6.0E-03	1.9E-04

Equipment	Equipment	Fuel	Power	Load Factor	Operating	Emission	Rate (g/s)
Category	Work Area	Туре	(hp)	(fraction of power)	Hours per Year	NOx	SO ₂
Loader	PIT	Diesel	580	0.59	3766	4.6E-03	1.4E-04
Loader	PIT	Diesel	580	0.59	7101	8.6E-03	2.7E-04
Loader	PIT	Diesel	580	0.59	6938	8.4E-03	2.7E-04
Loader	PIT	Diesel	357	0.59	3489	2.6E-03	8.2E-05
Loader	PIT	Diesel	357	0.59	1937	1.4E-03	4.6E-05
Loader	PIT	Diesel	231	0.59	1544	7.5E-04	2.4E-05
Manlift	INDUSTRIAL	Diesel	75	0.21	2524	3.2E-03	5.8E-06
Manlift	INDUSTRIAL	Diesel	75	0.21	2524	3.2E-03	5.8E-06
Manlift	INDUSTRIAL	Diesel	75	0.21	2524	3.2E-03	5.8E-06
Manlift	INDUSTRIAL	Diesel	75	0.21	2524	3.2E-03	5.8E-06
Manlift	INDUSTRIAL	Diesel	74	0.21	2524	3.2E-03	5.7E-06
Mule	INDUSTRIAL	Diesel	17	0.59	500	5.8E-04	8.4E-07
Mule	INDUSTRIAL	Diesel	17	0.59	500	5.8E-04	8.4E-07
Mule	INDUSTRIAL	Diesel	25	0.59	500	8.8E-04	1.3E-06
Skidsteer	INDUSTRIAL	Diesel	92	0.59	1000	1.5E-03	6.8E-06
Skidsteer	INDUSTRIAL	Diesel	110	0.59	1000	3.5E-04	7.3E-06
Skidsteer	INDUSTRIAL	Diesel	74	0.59	1000	3.5E-03	5.4E-06
Skidsteer	INDUSTRIAL	Diesel	67	0.59	1280	4.1E-03	6.3E-06
Skidsteer	INDUSTRIAL	Diesel	67	0.59	1122	3.6E-03	5.5E-06
Skidsteer	INDUSTRIAL	Diesel	67	0.59	668	2.1E-03	3.3E-06
Skidsteer	INDUSTRIAL	Diesel	98	0.59	1023	1.6E-03	7.4E-06
Snowblower	INDUSTRIAL	Diesel	325	0.43	1500	7.4E-04	2.3E-05
Snowmobile	AWAR	Diesel	142	0.59	700	3.1E-04	6.6E-06
Snowmobile	AWAR	Diesel	142	0.59	700	3.1E-04	6.6E-06
Telehandler	INDUSTRIAL	Diesel	111	0.21	1373	1.7E-04	4.2E-06
Telehandler	INDUSTRIAL	Diesel	111	0.21	1166	1.4E-04	3.6E-06
Telehandler	INDUSTRIAL	Diesel	121	0.21	2524	3.4E-04	8.4E-06
Telehandler	INDUSTRIAL	Diesel	121	0.21	2524	3.4E-04	8.4E-06
Telehandler	INDUSTRIAL	Diesel	121	0.21	2524	3.4E-04	8.4E-06
Telehandler	INDUSTRIAL	Diesel	121	0.21	2524	3.4E-04	8.4E-06
Telehandler	INDUSTRIAL	Diesel	74	0.21	1875	2.4E-03	4.2E-06
Telehandler	INDUSTRIAL	Diesel	74	0.21	3173	4.0E-03	7.2E-06
Telehandler	INDUSTRIAL	Diesel	74	0.21	1398	1.8E-03	3.2E-06

Equipment Category	Equipment Work Area	Fuel Type	Make and Model	Mine Unit #	km/year		on Rate km)
						NOx	SO ₂
Bus	AWAR	Diesel	Blue Bird Vision SL	65BUS04	10,160	1.7E-01	2.4E-03
Bus	AWAR	Diesel	Ford E450	65BUS01	10,160	1.7E-01	2.4E-03
Bus	AWAR	Diesel	Ford Transit	65VSE19	10,160	1.7E-01	2.4E-03
Bus	AWAR	Diesel	Ford Transit	65VSE20	10,160	1.7E-01	2.4E-03
Pickup	AWAR	Gasoline	Chevrolet Suburban	65PCK01	10,160	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Chevrolet Express 3500	65PCK07	308	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F550	65PCK02	7,284	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK03	9,388	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK04	10,160	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F350	65PCK05	10,160	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK06	14,348	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK11	8,100	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK12	10,160	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK13	11,512	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK14	4,264	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK15	17,804	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK16	9,300	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK17	3,700	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK18	10,160	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK19	9,724	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK20	22,752	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK21	13,512	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK22	16,500	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK23	13,500	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK24	3,836	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK25	11,764	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK26	6,688	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK27	12,272	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK28	10,160	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK29	8,532	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK30	12,504	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK31	10,704	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK32	10,504	2.0E-01	2.5E-03

Appendix D-5: Surface On-road Vehicle Fleet, Characteristics and Air Emissions

Equipment Category	Equipment Work Area	Fuel Type	Make and Model	Mine Unit #	km/year		on Rate km)
						NOx	SO ₂
Pickup	AWAR	Gasoline	Ford F250	65PCK33	1,444	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK34	9,892	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK35	8,068	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK36	12,960	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK37	4,932	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK38	10,160	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK39	10,160	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK40	6,700	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK41	16,516	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK42	5,780	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK43	10,160	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK44	16,268	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK46	10,160	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK49	14,648	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK50	1,976	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK51	10,160	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK52	10,160	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK53	34,852	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK54	4,260	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK55	10,160	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK56	1,320	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK57	8,244	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F250	65PCK58	9,580	2.0E-01	2.5E-03
Pickup	AWAR	Gasoline	Ford F350	65VSE23	10,160	2.0E-01	2.5E-03
Service Truck	PIT	Diesel	Ford F750	65TRK04	10,160	4.6E-01	3.7E-03
Service Truck	PIT	Diesel	Freightliner FL80	65TRK02	10,160	4.6E-01	3.7E-03
Service Truck	PIT	Diesel	Kenworth C500	65TRK01	10,160	4.6E-01	3.7E-03
Service Truck	PIT	Diesel	Kenworth T800	65TRK11	10,160	4.6E-01	3.7E-03
Service Truck	PIT	Diesel	Kenworth T800	65TRK12	10,160	4.6E-01	3.7E-03
Service Truck	PIT	Diesel	Kenworth T800	65TRK14	10,160	4.6E-01	3.7E-03
Service Truck	INDUSTRIAL	Diesel	Kenworth T400	65TRK21	10,160	4.6E-01	3.7E-03
Service Truck	PIT	Diesel	Mack DM690S	65TRK03	10,160	4.6E-01	3.7E-03
Service Truck	PIT	Diesel	Peterbilt 348	65TRK13	10,160	4.6E-01	3.7E-03

Blasting Source	Number of Blasts per Year	Amount of Blasting Product per Year	Amount of Blasting Product per Blast	Explosives Used	Adjusted Emission Per	Rate (g/s), over a 1 h iod (assumes ng the hour)
		(kg/y)	(kg/blast)		NOx	SO ₂
Tiriganiaq Underground	274	2,241,912	8,182	Emulsion for blasting product	5.7E-01	0
Pump Underground	60	490,930	8,182	Emulsion for blasting product	5.7E-01	0
Discovery Underground	31	253,647	8,182	Emulsion for blasting product	5.7E-01	0
Wesmeg WN01 Pit	156	2,859,246	18,328	Emulsion for blasting product	1.3E+00	0
Pump 03 Pit	52	953,082	18,328	Emulsion for blasting product	1.3E+00	0
F Zone Pit	52	953,082	18,328	Emulsion for blasting product	1.3E+00	0

Appendix D-6: Blasting, Characteristics and Air Emissions

Appendix D-7: Roads, Characteristics and Air Emissions

Road Segment Description	Equipment Work Area	Speed (km/h)	Approx. Distance Travelled, 1-Way Trip	Tailpipe Emission Rate for CALPUFF Road Source Type (g/s/m)		
			(km)	NO _x	SO ₂	
Wesmeg WN01 pit to the crusher +	Industrial	20	2.5	3.1E-05	7.7E-07	
Wesmeg WN01 pit to the closest WRSF	Pit	40				
Pump 01 pit to the crusher +	Industrial	20	3.0	8.4E-06	9.9E-08	
Pump 01 pit to the closest WRSF + Pump 03 pit to the crusher	Pit	40				
F Zone 01 pit to the crusher	Industrial	20	4.0	6.1E-06	3.0E-08	
	Pit	40				
F Zone 01 pit to the closest WRSF	Industrial	20	1.3	1.4E-05	2.7E-07	
	Pit	40				
Pump Underground to the Pump Salt Rock Pile	UG+SURF	20	0.7	1.6E-06	4.7E-08	
Discovery Salt Rock Pile to Discovery Underground	UG+SURF	20	0.6	8.9E-07	2.7E-08	
Tiriganiaq, Wesmeg, and Wesmeg WN01 Undergrounds to the crusher + Wesmeg and Wesmeg WN01 Undergrounds to WRSF1	UG+SURF	20	1.1	7.3E-06	2.2E-07	
Surface Tailings from dewatering	Industrial	20	0.8	1.4E-05	2.7E-07	
(church) to TSF + Tiriganiaq Underground to WRSF3	Pit	40				
Underground to WIXSI 5	UG+SURF	20				
Pump Underground to the crusher + TSF to Pump Underground	UG+SURF	20	4.3	2.6E-06	7.9E-08	
Pump 03 pit to the closest WRSF	Industrial	20	0.5	8.6E-06	1.1E-07	
	Pit	40	1			
Discovery Underground to the crusher	UG+SURF	20	19.4	1.4E-06	4.1E-08	
All Weather Access Road (AWAR)	AWAR	40	31.9	1.8E-07	3.2E-09	

APPENDIX E BUILDINGS INCLUDED IN BUILDING DOWNWASH ASSESSMENT

Building Name		UTM Coordinates, Zone 15V (approx. center of building)		
	Easting (m)	Northing (m)	(m)	
6-Million Diesel Tank	539368	6989925	7.0	
Power Plant	539215	6990040	14.4	
Electrical House West	539185	6990075	7.1	
Site Services Shop	539155	6990090	7.1	
MSB	539035	6990160	13.5	
Washbay	539070	6990100	8.5	
Core Shack / Assay Lab	539070	6990040	8.5	
Tailing Dewatering (Church)	539070	6989985	14.4	
Process Plant	539150	6989965	36.0	
Oxygen Plant	539165	6989850	5.0	
Ore Silo	539205	6989825	36.0	
Crusher	539265	6989690	24.4	
Incinerator Building	539395	6989830	7.5	

Appendix E: Buildings Included in Building Downwash Assessment

ERM has over 160 offices across the following countries and territories worldwide

Argentina Australia Belgium Brazil Canada Chile China Colombia France Germany Ghana Guyana Hong Kong India Indonesia Ireland Italy Japan Kazakhstan Kenya Malaysia Mexico Mozambique Myanmar

The Netherlands New Zealand Norway Panama Peru Poland Portugal Puerto Rico Romania Russia Senegal Singapore South Africa South Korea Spain Sweden Switzerland Taiwan Tanzania Thailand UAE UK US Vietnam

ERM's Vancouver Office

#1000 – 1100 Melville Street Vancouver, BC Canada V6E 4A6

T: +1 604 689 9460 F: +1 604 687 4277

www.erm.com

