Appendix 27

Whale Tail 2023 Mercury Monitoring Program Report

2023 Mercury Monitoring Program

Whale Tail Mine

Prepared for:

Agnico Eagle Mines Ltd Meadowbank Complex Baker Lake, NU XOC 0A0

FINAL March 21, 2024

AZIMUTH

Azimuth Consulting Group Inc. 218-2902 West Broadway Vancouver, B.C., V6K 2G8

Report Version Log

Version	Date	Distribution				
Draft (revision 0)	February 27, 2024	Agnico Eagle (e-copy)				
Final (revision 1)	March 21, 2024	Agnico Eagle (e-copy)				

SUMMARY

The 2023 Mercury Monitoring Program (MMP) was completed according to the study design outlined in the *Mercury Monitoring Plan* (Azimuth, 2023b). The purpose of the MMP is to assess changes in mercury concentrations caused by the creation of the Whale Tail Impoundment ("Impoundment") following the construction of the Whale Tail Dike in September 2018. Construction of the dike raised the elevation of the south basin of Whale Tail Lake (WTS) and connected WTS with Lake A20, Lake A65, and other small waterbodies adjacent to WTS. One of the effects of newly formed reservoirs is an increase in the production of methylmercury. Methylmercury bioaccumulates in aquatic food webs with the highest concentrations of methylmercury typically observed in large-bodied fish species like Lake Trout. In anticipation of this situation, predictions were made for the magnitude of increase expected in Lake Trout for the Final Environmental Impact Statement (FEIS; Azimuth, 2019). Mercury concentrations in Lake Trout are predicted to increase between 2-3 times above baseline concentrations. Total mercury concentrations in surface water are predicted to peak at 50-100 ng/L (Golder, 2019). No predictions were made for methylmercury in surface water or sediment.

The MMP was designed to monitor mercury dynamics in key components of the ecosystem to verify the FEIS predictions and manage methylmercury-related risks should those predictions be exceeded. The scope of the 2023 program included large-bodied (Lake Trout) and small-bodied fish, water, and sediment sampling at various locations within the Impoundment, downstream of the mine, and at local reference lakes. Key findings from the 2023 MMP are provided below.

Water

Mercury concentrations in surface water in the Impoundment were between 0.37 and 1 ng/L for total mercury and between 0.03 and 0.1 ng/L for methylmercury (filtered). Current concentrations are well below predictions in the FEIS and below the CCME water quality guidelines for the protection of aquatic life (26 ng/L for total mercury and 4 ng/L for methylmercury). Concentrations of total mercury and methylmercury increased during the early post-flooding years, but since 2020, concentrations have been fairly stable. In 2023, for the first time since the Impoundment was created, total mercury concentrations decreased compared to previous years. Methylmercury concentrations in filtered samples were still elevated in the Impoundment in 2023. Results from an additional year of sampling will help confirm whether methylmercury to Kangislulik Lake¹ and beyond is weak, suggesting that any contributions from WTS are minor relative to variability in baseline/reference conditions.

¹ Kangislulik Lake (KAN) was previously referred to as Mammoth Lake (MAM).

Mercury concentrations in surface water will continue to be monitored in 2024 as per the *Mercury Monitoring Plan* (Azimuth, 2023b).

Sediment

In 2023, sediment samples were collected from the depositional areas in the MMP lakes and inundated areas within the Impoundment. Flooded terrestrial soils are known to drive increased methylmercury production in reservoirs. Therefore, methylmercury concentrations are expected to be higher within the inundation zone sediment (formerly soils) compared to the depositional areas in the Impoundment.

Total mercury concentrations were below the CCME sediment quality guidelines at all areas for depositional and inundation zone samples. In 2023, total mercury concentrations in the depositional and inundation zones of the Impoundment were similar to baseline/reference conditions. Total mercury concentrations in the deposition zones in downstream exposure areas were similar to baseline/reference conditions.

Methylmercury concentrations in deposition zone samples in the Impoundment and in downstream areas were similar to baseline/reference. As anticipated, methylmercury concentrations were highest in the inundation zone sediment samples, which is expected as these areas are the main driver of the 'reservoir effect' in which bacterial decomposition of organic matter in inundated soils results in the methylation of inorganic mercury to form methylmercury.

Methylmercury concentrations in depositional zone sediments in Kangislulik Lake were similar to baseline and within reference range in 2023. This suggests, the increase in Kangislulik Lake observed in 2022 was an anomaly and unlikely to be related to mining activities.

For 2024, sediment grabs will be collected from depositional zones in the MMP area lakes and analyzed for total mercury as per the *CREMP 2022 Plan Update (Azimuth, 2022c)* to confirm that concentrations are within baseline/reference across sampling areas and remain below the CCME guideline in the Impoundment and at downstream areas. Methylmercury will not be analyzed in the sediment grabs from depositional zones in 2024. Trends in methylmercury in depositional zones will be reviewed during the next sediment coring program planned for 2026. Sediment sampling within the inundation zone will be repeated in 2026.

Small-bodied Fish

The primary reason small-bodied fish (Slimy Sculpin [*Cottus cognatus*] and Ninespine Stickleback [*Pungitius pungitius*]) are included in the MMP is to track temporal and spatial patterns in mercury at a key step in the food chain that ultimately leads to large-bodied fish. While the MMP's main focus is on mercury concentrations in large-bodied fish, the results for small-bodied fish help to understand how this northern ecosystem is responding to the creation of the Impoundment. This is particularly

important for understanding the overall trajectory of the 'reservoir effect' (e.g., to know when to expect fish mercury concentrations to start decreasing).

Both small-bodied fish species in the Impoundment showed marked increases in tissue mercury concentrations in 2020 that persisted in 2023. The temporal patterns seen to date for Ninespine Stickleback suggest that conditions may have stabilized somewhat as tissue mercury concentrations neither continued to rise sharply nor showed clear signs of decreasing back to baseline levels. For Slimy Sculpin, concentrations have continued to increase, though at a lesser extent than what was observed in the first year post-Impoundment (i.e., from 2019 to 2020).

Downstream, in KAN, there was no strong evidence of temporal increases in mercury concentrations relative to the reference lakes. This pattern is consistent with the surface water and depositional sediment results, where increases were not seen in KAN in 2023.

For 2024, the supplemental small-bodied fish mercury study is not planned as per the *Mercury Monitoring Plan* (Azimuth, 2023b).

Large-bodied fish – Lake Trout

Lake Trout (*Salvelinus namaycush*) is the target species to monitor mercury bioaccumulation in the food web because piscivorous fish such as Lake Trout typically have the highest concentrations of mercury in high-latitude lakes. Lake Trout were collected from the Impoundment in 2023 and mercury concentrations were found to be higher than baseline/reference concentrations and similar to the predicted peak mercury concentration.

Downstream, in KAN, mercury concentrations in Lake Trout were similar to baseline/reference concentrations and remained below the predicted peak mercury concentration. This indicates that downstream transport of mercury from the Impoundment is limited. These findings are consistent with the results to date for surface water, depositional sediment, and small-bodied fish.

The MMP has committed to implementing further risk-based analyses if fish tissue mercury concentrations in the Impoundment exceed the predicted peak mercury concentration for Lake Trout (Azimuth, 2019). However, as the 2023 mercury concentrations did not exceed the peak predicted concentration, no MMP-related risk management measures are required at this time.

The next large-bodied fish sampling event is planned for August 2026 as per the *Mercury Monitoring Plan* (Azimuth, 2023b).

TABLE OF CONTENTS

SUMMARY		111
TABLE OF CONTEN	ITS	VI
LIST OF FIGURES		VIII
LIST OF TABLES		IX
LIST OF APPENDIC	ES	IX
ACKNOWLEDGEM	ENTS	X
USE & LIMITATION	IS OF THIS REPORT	XI
ACRONYMS		XII
REPORT ORGANIZ	ATION	XIV

1 INTRODUCTION1

	1.1	Project Background1				
	1.2	Mercury	in the Aquatic Environment	5		
	1.3	Mercury	Monitoring Program	5		
		1.3.1	Overview	5		
		1.3.2	Study Areas for the Mercury Monitoring Program	6		
	1.4	Scope of	the 2023 Program	7		
2	WATI	ER		8		
	2.1	Key Findi	ngs for Water Chemistry in 2023	8		
	2.2	Overview	/	8		
	2.3	Methods		9		
		2.3.1	Sample Collection	9		
		2.3.2	Laboratory Analysis 1	1		
	2.4	Quality A	ssurance / Quality Control1	1		
	2.5	Results and Discussion1				
	2.6	Water Ch	emistry Summary1	5		
3	SEDI	VENT		9		
	3.1	Key Findi	ngs for Sediment Chemistry in 20231	9		
	3.2	3.2 Overview				
	3.3	Methods		9		
		3.3.1	Depositional Zones1	9		
		3.3.2	Inundation Zone	0		

		3.3.3	Laboratory Analysis	. 21
	3.4	Quality A	ssurance / Quality Control	. 23
		3.4.1	Field QA/QC	. 23
		3.4.2	Laboratory QC	. 23
	3.5	Results a	nd Discussion	. 23
	3.6	Sediment	t Chemistry Summary	. 25
4	SMA	LL-BODIED) FISH	. 29
	4.1	Key Findi	ngs for Small-bodied Fish in 2023	. 29
	4.2	Overview	/	. 29
	4.3	Methods		. 30
		4.3.1	Field Methods	. 30
		4.3.2	Laboratory Methods	. 31
		4.3.3	Data Analysis	. 33
	4.4	Quality A	ssurance/Quality Control	. 34
	4.5	Results a	nd Discussion	. 34
	4.6	Small-bo	died Fish Summary	. 36
5	LARG	E-BODIED	FISH	. 42
	5.1	Key Findi	ngs for Large-bodied Fish in 2023	. 42
	5.2	Overview	/	. 42
	5.3	Field Met	thods	. 43
	5.4	Laborato	ry Methods	. 43
	5.5	Data Ana	lysis	. 43
	5.6	Quality A	ssurance/Quality Control	. 45
	5.7	Results a	nd Discussion	. 46
	5.8	Large-bo	died Fish Summary	. 53
6	SCOP	PE OF THE	2024 MMP	. 53
7	REFE	RENCES		. 55

LIST OF FIGURES

Figure 1-1.	Lakes sampled as part of the Mercury Monitoring Program3
Figure 1-2.	Post-flood water levels in the Impoundment4
Figure 2-1.	Total mercury concentrations (ng/L) in filtered and unfiltered surface water samples in Whale Tail area lakes since 2016
Figure 2-2.	Methylmercury concentrations (ng/L) in filtered and unfiltered surface water samples in Whale Tail area lakes since 2016
Figure 2-3.	Ratio of methylmercury to total mercury (%MeHg) in filtered surface water samples in Whale Tail area lakes since 2016
Figure 3-1.	Total mercury and methylmercury (μg/kg dry weight) in sediment samples from Whale Tail area lakes since 2016
Figure 3-2.	Ratio of methylmercury to total mercury (%MeHg) in sediment samples from Whale Tail area lakes since 2016
Figure 4-1.	Fish tissue mercury concentrations (mg/kg ww) in Ninespine Stickleback (NSSB) and Slimy Sculpin (SLSC) collected at Whale Tail area lakes, 2018–2023
Figure 4-2.	Fish tissue mercury concentrations (mg/kg ww) and fish sizes (length; mm) for Ninespine Stickleback (NSSB) and Slimy Sculpin (SLSC) collected at Whale Tail area lakes, 2018–2023.
Figure 4-3.	Mean δ^{15} N and δ^{13} C signatures (± standard deviation), of Ninespine Stickleback (NSSB) and Slimy Sculpin (SLSC) collected at Whale Tail area lakes, 2018–2023
Figure 4-4.	Stable isotope $\delta^{15}N$ and $\delta^{13}C$ signatures and mercury concentrations in tissue from Ninespine Stickleback (NSSB) and Slimy Sculpin (SLSC) collected at Whale Tail area lakes, 2018–2023
Figure 5-1.	Length and age frequency for Lake Trout in Whale Tail study area lakes since 2015
Figure 5-2.	Key mercury relationships for Lake Trout in Whale Tail study area lakes since 201551
Figure 5-3.	Estimated tissue mercury concentrations for a 550-mm Lake Trout in Whale Tail area lakes since 2015

LIST OF TABLES

Table 2-1.	Summary of surface water samples collected for ultra-trace mercury analysis (total mercur	ry
	and methylmercury)	10
Table 3-1.	Summary of sediment chemistry samples collected for total mercury and methylmercury	
	analysis	22
Table 4-1.	Summary of small-bodied fish samples submitted for total mercury analysis	32
Table 5-1.	Summary of Lake Trout muscle tissue samples submitted for total mercury analysis since	
	2015	48
Table 5-2.	Lake Trout size, age, and mercury concentration data summary in Whale Tail area lakes	
	since 2015	49
Table 6-1. M	lonitoring components planned for the 2024 MMP	54

LIST OF APPENDICES

APPENDIX A	WATER DATA
Appendix A1	2023 Laboratory Data
Appendix A2	Surface Water Mercury Database
APPENDIX B	SEDIMENT DATA
Appendix B1	Sediment Mercury Database
APPENDIX C	FISH DATA
Appendix C1	Small-bodied Fish Mercury Database
Appendix C2	Large-bodied Fish Mercury Database
APPENDIX D	LENGTH-MERCURY RELATIONSHIPS FOR LARGE-BODIED FISH

ACKNOWLEDGEMENTS

The following people were involved in the Mercury Monitoring Program:

- Marianna DiMauro and Mehdi Aqdam (Azimuth) were the lead authors of the 2023 Mercury Monitoring Program report.
- Gary Mann (Azimuth) Gary was the technical advisor on this project and the primary reviewer.
- Ian McIvor (Azimuth), Marianna DiMauro (Azimuth), Brett Fotheringham, and Lars Qaqqaq collected water and sediment samples for mercury analysis in August 2023. Additional support was provided by other members of the Whale Tail Environment Team.
- Kilgour and Associates collected small-bodied fish for tissue mercury analysis in August 2023.
- Cam Portt (C. Portt and Associates) and Sawyer Stoyanovich (Kilgour and Associates) collected Lake Trout for tissue mercury analysis in August 2023. Cam Portt is a senior fisheries biologist who led the 2020 and 2023 Environmental Effects Monitoring program and assisted with fish sampling for the MMP.
- Rodrigo Santos Sousa, Wen Xu, Erin Mann, and Jeff Warner at the University of Western Ontario analyzed water and fish tissue samples for total and methylmercury. Results from 2018 to 2020 were reported to Dr. Heidi Swanson's research group at the University of Waterloo. Results from 2021 to 2023 were reported to Azimuth.
- Ken Ambrose and others from North/South Consultants Inc. who processed small-bodied fish collected in 2023 and provided ageing services for Ninespine Stickleback.

USE & LIMITATIONS OF THIS REPORT

This report has been prepared by Azimuth Consulting Group Incorporated (Azimuth), for the use of Agnico Eagle Mines Ltd., who has been party to the development of the scope of work for this project and understands its limitations. The extent to which previous investigations were relied on is detailed in the report.

In providing this report and performing the services in preparation of this report Azimuth accepts no responsibility in respect of the site described in this report or for any business decisions relating to the site, including decisions in respect of the management, purchase, sale or investment in the site.

This report and the assessments and recommendations contained in it are intended for the sole and exclusive use of Agnico Eagle.

Any use of, reliance on, or decision made by a third party based on this report, or the services performed by Azimuth in preparation of this report is expressly prohibited, without prior written authorization from Azimuth. Without such prior written authorization, Azimuth accepts no liability or responsibility for any loss, damage, or liability of any kind that may be suffered or incurred by any third party as a result of that third party's use of, reliance on, or any decision made based on this report or the services performed by Azimuth in preparation of this report.

The findings contained in this report are based, in part, upon information provided by others. In preparing this report, Azimuth has assumed that the data or other information provided by others is factual and accurate. If any of the information is inaccurate, site conditions change, new information is discovered, and/or unexpected conditions are encountered in future work, then modifications by Azimuth to the findings, conclusions and recommendations of this report may be necessary.

In addition, the conclusions and recommendations of this report are based upon applicable legislation existing at the time the report was drafted. Changes to legislation, such as an alteration in acceptable limits of contamination, may alter conclusions and recommendations.

This report is time-sensitive and pertains to a specific site and a specific scope of work. It is not applicable to any other site, development or remediation other than that to which it specifically refers. Any change in the site, remediation or proposed development may necessitate a supplementary investigation and assessment.

This report is subject to copyright. Reproduction or publication of this report, in whole or in part, without Agnico's prior written authorization, is not permitted.

ACRONYMS

CCME	Canadian Council of Ministers of the Environment
CFIRMS	Continuous flow isotope ratio mass spectrometer
CPUE	Catch per unit effort
CREMP	Core Receiving Environment Monitoring Program
CRM	Certified Reference Material
DQO(s)	Data Quality Objective(s)
dw	dry weight
EEM	Environmental Effects Monitoring
EIL	Environmental Isotope Laboratory
ELARP	Experimental Lakes Area Reservoir Project
FEIS	Final Environmental Impact Statement
FLUDEX	Flooded Uplands Dynamics Experiment
ISQG	Interim sediment quality guidelines (CCME sediment quality guidelines)
KAN	Kangislulik Lake (formerly known as Mammoth Lake [MAM])
masl	Metres above sea level
MB	Method blank
MDL	Method detection limit
MMP	Mercury Monitoring Program
MRL	Method Reporting Limit
MS	Matrix spike
NEM	Nemo Lake
NIRB	Nunavut Impact Review Board
NSSB	Ninespine Stickleback
NWB	Nunavut Water Board
PEL	Probable effect level (CCME sediment quality guidelines)
QA/QC	Quality Assurance / Quality Control
RPD	Relative percent difference
SIA	Stable isotope analysis
SLSC	Slimy Sculpin
SOP	Standard Operating Procedure
SWTC	South Whale Tail Channel
US EPA	United States Environmental Protection Agency
WOE	Weight-of-evidence

WQG Water quality guideline

WTS Whale Tail Lake south basin

wwt wet weight

REPORT ORGANIZATION

The Mercury Monitoring Program (MMP) report is organized in a main document and three appendices. Below is an overview of the various sections of the report to help the reader navigate the document.

The plain language summary provides a high-level summary of the monitoring results from 2023 for Lake Trout, small-bodied fish, water, and sediment. The monitoring results are discussed by media (i.e., water, sediment, fish tissue).

Section 1 introduces the MMP and provides an overview of the environmental setting for the project. The scope of mining development at the Whale Tail mine study area is outlined to describe how the MMP has been implemented to monitor changes in mercury concentrations in the aquatic receiving environment.

The following sections summarize the methods, results, and recommendations of the spatial and temporal trends in water quality, sediment chemistry, large-bodied and small-bodied fish in some of the Whale Tail mine area lakes.

- Section 2 (Water)
- Section 3 (Sediment)
- Section 4 (Small-bodied Fish)
- Section 5 (Large-bodied Fish)

Figures and tables are included within the text.

1 INTRODUCTION

1.1 Project Background

The Amaruq Property is a 408-square-kilometer area located on Inuit Owned Land, approximately 150 kilometers north of Baker Lake and approximately 50 kilometers northwest of the Meadowbank mine. Approval for the development of the Whale Tail gold deposit was originally issued in 2018 and amended in 2020 to include proposed changes as per the Whale Tail Expansion Project (NIRB Project Certificate No. 008, Amendment 001). The Project, located on the Amaruq site, is operated as an extension to the operational Meadowbank mine, now referred to as the Meadowbank Complex (**Figure 1-1**).

The Whale tail deposit was developed as an open pit mine. To access the deposit, a dike was constructed across Whale Tail Lake to isolate the north basin of Whale Tail Lake before dewatering (**Figure 1-2**). Dike construction was completed in September 2018 and dewatering of the north basin occurred between March 2019 and May 2020 (Agnico Eagle, 2021). The Whale Tail Dike altered the local hydrology by increasing water levels and creating a small reservoir (the "Impoundment"). The Impoundment has resulted in interconnectivity among Whale Tail Lake, Lake A65, Lake A63, Lake A20, and other small ponds. Approximately 157 ha of tundra were originally predicted to be flooded at peak water elevation. However, that estimate was revised to 148.5 ha based on higher-resolution LiDAR imagery collected in 2018 as part of the Whale Tail Expansion Project (Agnico Eagle, 2021).

Before flooding, the water level in Whale Tail Lake was approximately 152.5 metres above sea level (masl). Peak flooding occurred in 2019 (155.8 masl), coinciding with an abnormally high amount of precipitation in July and August. A diversion channel – the South Whale Tail Channel (SWTC) – was constructed between Lake A20 and Kangislulik Lake² prior to the 2020 spring freshet to passively manage the water level in the Impoundment below 156 masl (**Figure 1-2**). The inlet of the SWTC at Lake A20 is approximately 0.5 m below the maximum water level of 156 masl. In 2022, the water levels decreased slightly to 155 masl at WTS, and 154.9 masl at Lake A20 (Pers. Comm. Patrice Gagnon and Tom Thomson, August 19, 2022). Water levels peaked between 155.5 to 155.7 masl during freshet from 2020 to 2023 (Pers. Comm. Leilan Baxter, February 8, 2024).

Mercury monitoring is conducted according to the *Mercury Monitoring Plan* (the Plan; Azimuth, 2023b) to satisfy requirements under Condition 63 NIRB Project Certificate No. 008 and NWB Water License 2AM-WTP1830. The core elements of the Mercury Monitoring Program (MMP) are water, sediment, and large-bodied fish chemistry (Lake Trout). Small-bodied fish tissue chemistry is also included in the MMP,

² Kangislulik Lake (KAN) was previously referred to as Mammoth Lake (MAM).

integrating data generated as part of a multi-year study investigating productivity within the Whale Tail Lake Impoundment by the University of Waterloo (2018 to 2021) and supplemental sampling for the MMP (2023).

The primary objective of the MMP is to verify that mercury concentrations in Lake Trout (*Salvelinus namaycush*) are within or below the predictions³ for the Whale Tail mine. The next large-bodied fish sampling event targeting Lake Trout is planned for 2026, coinciding with the Cycle 2 Environmental Effects Monitoring (EEM) study at Whale Tail.

³ Predictions in the FEIS (Agnico Eagle, 2018) were originally presented in Azimuth 2017 and were updated in Azimuth 2019 to reflect changes to the proposed flooding duration of Whale Tail Lake (South Basin) as part of the proposed expansion activities for the Whale Tail mine.

7	AZIMUTH			
Client	Agnico Eagle Mines Limited - Meadowbank Division			
igure 1-1	Lakes Sampled as Part of the Mercury Monitoring Program			
Project	Whale Tail Mine Mercury Monitoring Program			
Vate: February 21, 2024 Datum: NAD 83 UTM Zone 14N icale: 1:350,000 ioftware: QGIS version 3.22.11-Białowieża				
EFERENCES: . Mine Plan from Agnico Eagle (2021) . Satellite image from ESRI . Regional watershed boundaries and waterbodies from NRCan . Amaruq watershed boundaries from Agnico Eagle				

1.2 Mercury in the Aquatic Environment

Mercury is a naturally occurring element that is found in low levels everywhere- in air, water, soil, plants, animals, and humans. In aquatic environments, bacteria turn naturally occurring inorganic mercury into methylmercury, a highly bioavailable form of mercury. Methylmercury is readily bioaccumulated and biomagnified through the food chain, meaning it is found in the highest concentrations in long-lived animals near the top of the food chain. Flooding terrestrial habitat, such is the case for the Whale Tail Lake south basin (WTS) and sub-watershed lakes, can lead to elevated methylmercury production associated with the decomposition of organic matter within the flood zone. The elevated methylmercury production results in increases in methylmercury in all components of the ecosystem. Concentrations are highest in the tissue of long-lived, predatory fish species, such as Lake Trout, and peak anywhere from four to 12 years after flooding. The increase is temporary, however, and as flooded carbon sources for bacterial decomposition are exhausted, methylmercury concentrations gradually decline throughout the ecosystem.

Additional information on mercury in the environment, including the physical, chemical, and ecological factors that drive mercury methylation dynamics in aquatic environments following flooding and soil inundation, is described in Azimuth (2017).

1.3 Mercury Monitoring Program

1.3.1 Overview

The core elements of the MMP are water chemistry, sediment chemistry, and fish tissue chemistry. This report compares water chemistry, sediment chemistry, and fish tissue data collected before (i.e., baseline) with data collected after flooding of the tundra around the south basin of Whale Tail Lake.

Data presented in the MMP have been collected under various research and monitoring programs (see below). Data analysis and reporting under the MMP are completed solely by Azimuth.

- Ultra-trace mercury sampling in water was led by Dr. Heidi Swanson (University of Waterloo) until 2020. Azimuth has been leading the ultra-trace mercury water sampling since 2021.
- Azimuth completed sediment sampling as part of the Core Receiving Environment Monitoring Program (CREMP).
- Small-bodied fish sampling was led by Dr. Swanson's research group from 2018 to 2021. In 2023, C.
 Portt and Associates and Kilgour and Associates collected fish as part of the harmonized fish sample collection for the Environmental Effects Monitoring (EEM) and MMP. Azimuth assisted Lake Trout sample collection in 2023.

• Large-bodied fish samples have been collected by North/South Consultants (Whale Tail North basin fish-out) and C. Portt and Associates (index sampling and EEM). Supplemental fish sampling was led by Azimuth.

1.3.2 Study Areas for the Mercury Monitoring Program

Sampling areas include locations within the Impoundment, downstream from the mine, and regional reference area lakes.

- Whale Tail Lake South Basin (Whale Tail Lake [WTS]) water levels were consistent with baseline conditions in the south basin until dewatering started in March 2019. The Impoundment was fully flooded by August 2019 (i.e., connected to sub-watershed lakes, including A20, A63⁴, and A65). Details on the water levels in Whale Tail Lake and the connectivity with surrounding lakes are provided in Section 1.1.
- Lakes A20, A63, A65 these lakes are situated inside the full-flood zone of the Impoundment. They
 would still have been independent of the Impoundment in August 2018, but part of the contiguous
 Impoundment by the August 2019 MMP sampling event.
- Kangislulik Lake (KAN) this lake first received post-inundation inputs from the Impoundment in the fall of 2019 to manage water levels before completing the SWTC, which became operational in spring of 2020. The SWTC connects the Impoundment to KAN via Lake A20.
- Lake A76 this lake, located downstream of KAN, is a mid-field (MF) area for both the CREMP and the MMP.
- Lake DS1 (Amur Lake) this lake, the downstream-most lake sampled in the Whale Tail Lake watershed, is the far-field (FF) exposure area for the CREMP and MMP. Lake DS1 is the largest lake in the local study area.
- Nemo Lake (NEM) Nemo Lake was originally included as a reference lake in the CREMP. It shifted to an exposure lake in 2019 when it received dewatering inputs. However, since it is not connected to the Whale Tail Lake watershed it was retained as a reference lake for surface water collection in the MMP in 2018 and 2020.
- Reference Lakes several reference lakes have been sampled for the MMP because of cross-over with the productivity study, the EEM program, and the CREMP. The list of reference lakes includes Lake 8, Lake D1, Lake B3, Lake A44, Inuggugayualik Lake (INUG), and Pipedream Lake (PDL). All of these lakes are located outside Whale Tail Lake watershed and together they provide a

⁴ Lake A63 was one of the lakes monitored under the mandate of the research conducted by the University of Waterloo. Since Lake A63 is now part of the contiguous Impoundment and was not formally included in the MMP, the data are not provided in this report.

comprehensive understanding of background mercury concentrations in the region. At least two reference lakes have been sampled annually to help explain natural or climate-related changes in mercury that are affecting the entire region. Decisions about which reference lakes to include in the MMP in a given year are influenced by study design requirements for other programs, namely the CREMP and EEM. The goal is to optimize the MMP to ensure resources are deployed efficiently.

1.4 Scope of the 2023 Program

The scope of the 2023 MMP included:

- Surface water results from 2023 were compared to previous years (pre- and post-inundation), to predictions for the Expansion Project, and applicable water quality guidelines.
- Sediment samples were collected from two habitat zones; they were compared to baseline results and applicable sediment quality guidelines.
 - Deposition these deep zones are targeted in all sampling areas in both the CREMP and the MMP. Sediment accumulating in these habitats provides a long-term record of lake-wide processes.
 - Inundation these shallower zones only occur in the Impoundment. They were formerly terrestrial habitat that was inundated as water levels increased after dike construction. Tundra soils situated within the future inundation zone of the Impoundment were sampled for soil chemistry at four locations in 2016 to characterize mercury-related baseline conditions (Azimuth, 2018). Now flooded, these areas are expected to be important zones for mercury methylation within the Impoundment. The four original locations, submerged since 2019 and categorized as sediment, were sampled in 2021 to characterize post-inundation conditions, but the samples were mistakenly discarded by the laboratory before analysis. These locations were resampled in 2022 and 2023, along with two new stations, and those results are included in this report.
- Fish
 - Large-bodied fish (Lake Trout) were collected in August 2023. The next sampling event is planned for Whale Tail Lake and selected reference lakes in 2026, as per the *Mercury Monitoring Plan* (Azimuth, 2023b).
 - Small-bodied fish were collected in August 2023 to verify whether mercury concentrations had peaked in fish from the Impoundment. Two species are targeted for small-bodied fish: Slimy Sculpin (*Cottus cognatus*) and Ninespine Stickleback (*Pungitius pungitius*).

2 WATER

2.1 Key Findings for Water Chemistry in 2023

- In 2023, total mercury concentrations in surface water in the Impoundment were below predicted concentrations in the FEIS; total mercury and methylmercury concentrations were well below CCME water quality guidelines for the protection of aquatic life.
- Methylmercury concentrations are the best indicator of changes in mercury methylation rates associated with impoundment creation. Based on patterns observed in two experimental reservoir studies in Ontario⁵, the expected temporal trend is an increase in the first year, followed by a peak within the first two to three years, and then a decline towards background levels. After a sharp increase at WTS in the first year after impoundment (2020), concentrations have remained elevated through the fourth year post-impoundment (2023). The magnitude of increase observed at WTS is consistent with the Ontario studies, but the duration of higher methylmercury production is longer, likely due to colder temperatures and a shorter open water period at WTS. We anticipate that methylmercury concentrations should start to decline in the next year or two.
- Evidence of downstream transport of methylmercury to Kangislulik Lake and beyond is weak, suggesting that any contributions from WTS are minor relative to variability in baseline/reference conditions.

2.2 Overview

Predicted changes in total mercury concentrations in surface water were presented in the FEIS for the Whale Tail mine (main document of the 2018 FEIS Addendum, Section 6.2.3.2.; Golder, 2019). The predicted changes in total mercury concentrations in Whale Tail Lake were between 50 ng/L and 100 ng/L. The prediction is based on baseline measurements and scaling from the mercury literature review (Azimuth, 2017). The total mercury concentrations in surface water represent the maximum possible increase that could occur in Whale Tail Lake.

Dissolved methylmercury concentrations in surface waters are the best indicators of increased methylation rates in the impoundment. While no specific predictions were made, the expected temporal pattern is an increasing trend while methylation rates in the inundation zone remain elevated followed by a decrease as the bacterial decomposition that drives methylation taper off. Thus, a definitive peak in dissolved methylmercury concentrations in surface water indicates that methylmercury production is decreasing and that concentrations throughout the food web should also

⁵ Experimental Lakes Area Reservoir Project (ELARP) and Flooded Uplands Dynamics Experiment (FLUDEX).

start decreasing. In 2023, methylmercury concentrations are still elevated in the Impoundment. Results from an additional year of sampling will help confirm whether methylmercury concentrations are decreasing.

2.3 Methods

Ultra-trace total mercury data for the MMP are collected in August of each year, concurrent with water sampling for the CREMP. Samples were collected in 2023 by Azimuth; details are provided below.

2.3.1 Sample Collection

Ultra-trace mercury samples were collected as surface level-grabs, following the *clean hands/dirty hands method* (US EPA, 1996). Sample bottles were double-bagged from the laboratory and returned to the laboratory in the same double bags. Samples were collected by a two-person field team; one team member, designated the *clean hands*, only handled the inner bag and sample container, while the second team member, designated the *dirty hands*, handled the outer bag and filtering equipment, but never contacted the sample container or inner bag. Unfiltered samples were collected at each station for total⁶ and methylmercury. Samples were stored in a freezer on-site. Water samples were shipped in coolers with ice packs to the laboratory at the earliest convenience to minimize the possibility of exceeding the recommended hold-times between collection and analysis. Samples were filtered and preserved by the laboratory (Biotron) upon receipt. Samples collected for mercury analysis are summarized in **Table 2-1**.

⁶ The *total* in total mercury refers to the inclusion of all species of mercury (i.e., both inorganic and organic forms). To avoid confusion, we use the term *unfiltered* rather than *total* when addressing partitioning between particulate-bound and dissolved phases.

Arres (Labo	Desimution	Year ⁺							
Area/Lake	Designation	2016	2017	2018	2019	2020	2021	2022	2023
Whale Tail – South Basin									
Impoundment	NF	n=1	n=1	n=2	n=2	n=2	n=2	n=2	n=2
Lake A20 Impoundment	NF	-	-	n=2	n=2	n=2	n=2	n=2	n=2
Lake A65 Impoundment	NF	-	-	n=2	n=2	n=2	n=2	n=2	n=2
Kangislulik Lake*	NF	-	n=1	n=2	n=2	n=2	n=2	n=2	n=2
Lake A76	MF	-	-	n=2	n=2	n=2	n=2	n=2	-
Lake DS1	FF	-	-	-	n=2	n=2	n=2	n=2	n=2
Inuggugayualik Lake	Reference	-	-	-	-	n=2	n=2	n=2	n=2
Pipedream Lake	Reference	-	-	-	-	n=2	n=2	n=2	n=2
Lake 8	Reference	-	-	n=2	n=2	n=2	-	-	-
Lake D1	Reference	-	-	-	-	n=2	n=2	-	-
Nemo Lake	Reference	-	-	n=2	-	n=2	-	-	-
Lake B3	Reference	-	-	-	-	n=2	n=2	n=2	-
Lake A44	Reference	-	-	-	-	n=2	n=2	n=2	-

Table 2-1. Summary of surface water samples collected for ultra-trace mercury analysis (total mercury and methylmercury).

Notes

[†]Minor flooding of the Impoundment, limited to Whale Tail (south basin). Extensive during 2019 and 2020 sampling (i.e., connectivity between impounded lakes). *Kangislulik Lake (KAN) was previously referred to as Mammoth Lake (MAM).

NF = near-field, MF = mid-field, FF = far-field

Shading indicates the status of the lake:

blue = baseline and reference areas (Control designation)

orange = post flooding (Impact designation)

"n" = number of sites sampled

"-" = data not collected as per the *Mercury Monitoring Plan* (Agnico Eagle, 2019)

Strikethrough = data excluded from the dataset. Water chemistry results from 2019 (strikethrough) were excluded from the dataset because they were contaminated at the University of Waterloo before analysis (see Appendix L in Azimuth 2020 for details).

2.3.2 Laboratory Analysis

Water samples were analyzed at Biotron, at the University of Western Ontario, using an ultra-low detection limit. This is a CALA-accredited laboratory, with detection limits for mercury that are lower than those available from commercial analytical laboratories. The detection limits are calculated each year to comply with the EPA method detection limit (MDL) revision 2 (EPA 821-R-16-006 – Dec 2016). The reporting limit for all ultra-trace water data collected to date was set to the method reporting limit (MRL) for the MMP, which corresponds to the MDL with a safety factor of approximately 3-times the MDL applied. Since 2020, Biotron has increased the MDL/MRL for methylmercury slightly each year to counter a drop in signal due to ageing instrumentation. In January 2024, Biotron received new instrumentation and their new MDL/MRL values are now comparable to 2020 levels (Pers. Comm. Rod Santos Sousa from Biotron, March 11, 2024).

Total mercury analysis of filtered and unfiltered samples was completed using cold vapour atomic fluorescence spectrophotometry (Method Ref. modified from EPA 1631). Methylmercury analysis of filtered and unfiltered samples was completed using cold vapour atomic fluorescence spectroscopy (Method Ref. modified from EPA 1630).

2.4 Quality Assurance / Quality Control

The objective of quality assurance/quality control (QA/QC) is to assure that the chemistry data collected are representative of the material or populations being sampled, are of known quality, have sufficient laboratory precision to be highly repeatable, are properly documented, and are scientifically defensible. Data quality was assured throughout sample collection and analysis using specified standardized procedures, using laboratories that have been certified for all applicable methods, and staffing the program with experienced environmental scientists.

Field QC procedures included collecting and analyzing field duplicates and two types of blank samples: travel blanks and de-ionized (DI) water blanks. Blank sample collection required careful planning, attention to detail, focus on the importance of cleanliness, and generally provided a good opportunity to assess QA procedures. Blank samples were collected during the August sampling event and were submitted blind to the laboratory to ensure they were treated the same as field-collected samples during analysis. Results of the field QA/QC analysis are summarized herein:

- Travel blanks and DI blanks one DI blank and one travel blank were submitted in 2023. Total mercury and methylmercury concentrations in filtered and unfiltered DI blank and travel blank samples were below the method reporting limit (**Appendix A1**).
- Field Duplicates The target frequency of collecting sample duplicates was approximately 10% of the total number of samples collected. In 2023, 14 water samples and two field duplicates were

collected. The field duplicate data are provided in the laboratory results from Biotron (**Appendix A1**).

Laboratory QC results reported by Biotron are summarized below.

- Laboratory duplicate samples had an average relative percent difference (RPD) of 8% for methylmercury and 12% for total mercury.
- The average matrix spike RPD was 2% for methylmercury and 8% for total mercury.
- The method blank (MB) was less than method reporting limits for methylmercury and total mercury analysis.
- For one sample (INUG-153), the filtered fraction was slightly higher than the unfiltered fraction of total mercury (RPD = 2.1%). For all of the other mercury water results, the concentration in the unfiltered fraction was equal to or greater than the filtered fraction.
- There were no flags on quality control violations for any of the samples in 2023.

Overall, the 2023 data met the data quality objectives of the MMP.

2.5 Results and Discussion

Total mercury and methylmercury concentrations in filtered and unfiltered samples collected from 2016 through 2023 are presented in **Figure 2-1** and **Figure 2-2**. Tabulated results are provided in **Appendix A**. Results are first compared to FEIS predictions and to CCME water quality guidelines (WQGs), then spatial-temporal patterns are reviewed. Lastly, ratios of methylmercury to total mercury (%MeHg) in filtered surface water samples are explored.

Comparison to FEIS Predictions and to CCME WQGs

Total mercury concentrations observed in Whale Tail Lake in 2023 were well below both the predicted concentrations in the FEIS⁷ (50 to 100 ng/L) and the CCME WQGs for the protection of aquatic life (26 ng/L; CCME, 2003). Methylmercury concentrations in the Impoundment in 2023 were well below the 4 ng/L CCME WQG for the protection of aquatic life (CCME, 2003). Note that while both CCME guidelines are appropriate for assessing the potential effects from direct exposure to total mercury or methylmercury, neither were derived to protect aquatic-dependent wildlife or humans from exposure to mercury bioaccumulation into the food chain; we address this by directly measuring mercury in fish, which is an important exposure route for wildlife and humans.

⁷ Predicted maximum total mercury concentrations in water during impoundment. Predicted concentrations conservatively based on assumptions from literature on permanently flooded reservoirs and baseline measurements (Golder, 2019).

Total Mercury

- Baseline/reference conditions total mercury concentrations in unfiltered surface water samples collected prior to Impoundment or at reference lakes ranged from <0.017 ng/L to approximately 1.5 ng/L. There were two total mercury concentrations in unfiltered surface water samples that were higher than the typical range in 2022 (i.e., 4.25 ng/L at A44 and 5.61 ng/L at B3). Pre-impoundment concentrations for WTS were approximately 0.3 to 0.5 ng/L. In references lakes, concentrations were generally lower in 2023 compared to the observations in previous years.
- Impoundment post-inundation total mercury concentrations in filtered samples increased in the Impoundment post-inundation compared to reference/baseline conditions and ranged from approximately 0.3 to 3 ng/L. Total mercury concentrations reached a maximum of approximately 3 ng/L, which was observed at A65 in the first post-inundation event (2020); while still elevated, in 2023 concentrations decreased in filtered samples and ranged from 0.22 to 0.4 ng/L.
- Downstream post-inundation trends downstream of the Impoundment are harder to attribute to the Impoundment. While total mercury concentrations downstream of the Impoundment have been higher than baseline conditions since 2020, the same pattern was seen across the reference lakes. Further, the results seen for exposure areas KAN, A76, and DS1 since 2020 have not been systematically higher than those measured in the reference lakes. In 2023, total mercury concentrations in filtered water samples from downstream lakes KAN and DS1 ranged from 0.17 to 0.23 ng/L, which were generally lower than those recorded in the previous years. These results suggest that environmental variability is the dominant driver of the observed total mercury results to date downstream of the Impoundment.

Methylmercury

- Baseline/reference conditions methylmercury concentrations in filtered surface water samples collected prior to flooding or at reference lakes were below laboratory detection limits (<0.018 to <0.05 ng/L) in most samples.
- Impoundment post-inundation methylmercury concentrations in filtered surface water samples in WTS had increased by approximately an order of magnitude relative to baseline/reference conditions by the first post-inundation sampling event (approximately 0.5 ng/L in 2020) and have remained elevated since then. Despite the elevated methylmercury concentrations in surface water seen in the Impoundment from 2020 onwards ranging from <0.034 to 0.4 ng/L in filtered samples and from 0.08 to 0.7 ng/L in unfiltered samples, they are still below CCME water quality guidelines (4 ng/L; CCME, 2003).
- **Downstream post-inundation** concentrations in the three downstream sampling areas show some signs of increase relative to baseline/reference conditions, but the changes are subtle and

are likely influenced by environmental variability. For example, the highest methylmercury concentrations in downstream areas since 2020 have been observed at the far-field exposure area Lake DS1, which was not sampled in the baseline period. With the Impoundment as the source of elevated methylmercury, downstream concentrations would be expected to first increase at near-field area KAN, then mid-field area Lake A76 before seeing any change at far-field Lake DS1. However, this was not observed. Further, methylmercury concentrations at the downstream areas were not consistently higher than those observed at the reference lakes. When concentrations were higher than at reference lakes, they were only marginally so. In 2023, results were mostly less than detection limit, except two unfiltered samples; the highest mercury concentration of the two detected concentrations was in the sample collected from DS1 (0.59 ng/L). While there may be subtle Impoundment-related increases of methylmercury at the downstream exposure areas, the observed concentrations at Lake DS1 appear unrelated to the Impoundment.

Methylmercury: Total Mercury Ratios

The relative amount of methylmercury compared to total mercury (%MeHg) in environmental media (e.g., water, sediment) provides information on how much mercury is in the methylated form in the system. When assessed over space and/or time, the %MeHg metric provides insights into differences in methylmercury production (Figure 2-3).

- **Baseline/reference conditions** the %MeHg in filtered surface water samples collected before flooding or at reference lakes ranged from 1.4 to 13 %MeHg.
- Impoundment post-inundation the %MeHg in filtered surface water samples collected in the Impoundment after flooding ranged from 3.7 to 41 %MeHg. Increases in %MeHg over baseline/reference conditions were observed at WTS in the first post-inundation event (2020). The %MeHg has remained elevated since then. While results generally show a slight increase in the Impoundment in 2023 compared to 2022, %MeHg was lower for WTS in 2023. While there is no clear evidence that methylmercury production has peaked yet in the Impoundment, the available results do not indicate that it is still increasing rapidly.
- Downstream post-inundation similar to methylmercury concentrations, the evidence for downstream increases in %MeHg is weak. A downstream influence would be expected to result in more pronounced changes at KAN, followed by more muted changes at A76 and DS1 relative to baseline/reference conditions. That pattern has not been observed. Rather, results for the downstream lakes have been variable but within the range observed across baseline/reference conditions (~5 to 20 %MeHg). In 2023, the reference lakes were at the upper end of that range. Thus, there is no apparent influence of the impoundment on %MeHg.

2.6 Water Chemistry Summary

Mercury concentrations in surface water in the Impoundment were below predicted concentrations in the FEIS and well below CCME water quality guidelines for the protection of aquatic life.

The increase in both total mercury and methylmercury that were seen in the Impoundment initially in 2020 after inundation has been fairly stable ever since. Filtered methylmercury concentrations are the best indicator of methylation rates in the impoundment as they provide a direct measure of methylmercury without the possible confounding influence of suspended particulates. Hall et al (2009) described temporal changes in methylmercury in water from four experimental reservoirs created during the ELARP and FLUDEX programs at the Experimental Lakes Area in Ontario. They found that methylmercury concentrations increased substantially in the first year, peaked in the second or third year, and then decreased. Peak concentrations of unfiltered methylmercury (filtered samples not collected) ranged from 0.4 to 1.9 ng/L in the experimental reservoirs. The highest unfiltered methylmercury concentration in WTS was 0.7 ng/L in 2022, three years after flooding. These results suggest that we should see concentrations decreasing fairly soon. However, given the high latitude of WTS, it is possible that the 'reservoir effect' will be less severe but more drawn out at WTS due to colder temperatures and a shorter open water period.

Evidence of downstream transport of methylmercury to Kangislulik Lake and beyond is weak, suggesting that any contributions from WTS are minor relative to variability in baseline/reference conditions.

In 2024, surface water samples will be collected from MMP area lakes and analyzed for ultratrace total mercury and methylmercury (filtered and unfiltered samples) as per the *Mercury Monitoring Plan* (Azimuth, 2023b).

Figure 2-1. Total mercury concentrations (ng/L) in filtered and unfiltered surface water samples in Whale Tail area lakes since 2016.

Notes: Water samples for ultra-trace mercury analyses were collected in August. Total mercury concentrations are below the 26 ng/L CCME water quality guideline for the protection of aquatic life. Total mercury concentrations in Whale Tail (south basin) are below the FEIS predicted concentration of 50 to 100 ng/L and the 16 ng/L CREMP trigger value.

Figure 2-2. Methylmercury concentrations (ng/L) in filtered and unfiltered surface water samples in Whale Tail area lakes since 2016.

Notes: Water samples for ultra-trace mercury analyses were collected in August. All methylmercury concentrations are below the 4 ng/L CCME water quality guideline for the protection of aquatic life.

Figure 2-3. Ratio of methylmercury to total mercury (%MeHg) in filtered surface water samples in Whale Tail area lakes since 2016.

Notes: Water samples for ultra-trace mercury analyses were collected in August.

Impoundment Oownstream Reference

3 SEDIMENT

3.1 Key Findings for Sediment Chemistry in 2023

- Total mercury concentrations remain below the CCME sediment quality guidelines at all areas for depositional and inundation zone samples.
- Total mercury concentrations were similar to baseline/reference conditions in the depositional zones of the Impoundment and downstream exposure areas. Total mercury concentrations in the inundation zone samples were similar to baseline/reference conditions in 2023.
- Methylmercury concentrations in the depositional zone sediments in the Impoundment were similar to baseline. The inundation zone methylmercury concentrations remained elevated compared to depositional zone samples in 2023. This was expected, as conditions in these areas are known to stimulate mercury methylation.
- Methylmercury concentrations in depositional zone sediments in downstream area KAN were similar to baseline and within reference range in 2023. This suggests the apparent increase in KAN observed in 2022 was an anomaly and unlikely to be mine-related.

3.2 Overview

The sediment chemistry component of the MMP consists of both grab samples and core samples. Grab samples integrate sediment chemistry across the top 3 to 5 cm to characterize conditions within the biologically active zone. Sedimentation rates in these headwater lakes are typically low, so sediment coring is done to quantify changes in sediment chemistry in the most active layer. The coring program focuses on the top 1.5 cm of sediment to track changes over time. Grab samples are collected each year as part of the CREMP and MMP at the same locations as the CREMP benthic invertebrate community samples. Sediment cores are collected every three years under the CREMP to coincide with EEM requirements under the MDMER. In 2023, core and grab samples were collected from routine CREMP sampling areas and from six locations in the Whale Tail Lake inundation zone coinciding with 2016 soil sampling locations.

3.3 Methods

3.3.1 Depositional Zones

A summary of sediment sample collection (grabs and cores) by location and year is provided in **Table 3-1**. Sediment grab samples were collected using a Petite Ponar (6" x 6"). Sediment was collected by lowering the grab to within 1 m of the sediment, at which point the rate of descent was slowed to

minimize disruption of the surficial layer of sediment. Upon retrieval, the grab was inspected according to the acceptability criteria outlined in the standard operating procedure (SOP), namely: the absence of large foreign objects, adequate penetration depth, the grab is not overfilled, the jaws closed completely (i.e., well-sealed), and the sediment surface in the grab is undisturbed. Grabs that failed the acceptability criteria were discarded into a 20-L bucket and retained until sampling was completed at the station. The top 3 to 5 cm was collected, consistent with Meadowbank and whale Tail CREMP protocols and analyzed for total and methylmercury. A total of five grab sample replicates are collected at each lake.

Sediment cores were collected using a gravity corer (barrel diameter of 7 cm). The corer was lowered to within 1 m of the bottom, then the rate of descent was slowed letting the weight of the core head assembly push the core barrel into the sediment. The depth of penetration depends on the sediment composition (i.e., shallow cores in predominantly clay sediment, deeper cores in silt sediments). The corer was then retrieved and a check valve was used to retain the sediment in the core tube. Each time the corer was retrieved, the contents were inspected to ensure the core was intact, not mixed or disturbed, and that the overlying water was clear. The top 1.5 cm of the sediment core was extruded into a sample jar for total and methylmercury analysis. Ten core samples collected at each lake with at least 5 m between stations. All ten cores were analyzed for total mercury, while only five of the ten cores were analyzed for methylmercury as per the *Mercury Monitoring Plan* (Azimuth, 2023b).

3.3.2 Inundation Zone

Sediment samples for methylmercury analysis were collected at six locations within the inundation zone to support the MMP. Four samples were collected along the shorelines of Whale Tail Lake and Lake A65 from areas where mercury-related soil samples were collected in 2016 as part of the baseline studies for the Project. Two additional locations were sampled in 2023 in the flood areas along the shoreline of Lake A20.

The inundated area in WTS, Lake A2O, and Lake A65 ranged from approximately 20 to 50 cm deep, limiting the area that could be sampled. Furthermore, most of the shoreline around Lake A2O is very rocky further limiting the potential sample areas. Two locations in Lake A2O were selected near the South Whale Tail Channel (SWTC).

Samples were collected using a stainless-steel spoon and bowl⁸ from flooded areas within the inundation zone to a maximum water depth of 50 cm accessed using chest waders. The substrate throughout the inundation zone primarily consisted of an organic layer overlying soil. As a whole, the

⁸ Efforts to collect sediment in this zone using traditional methods (e.g., grab or core) were not possible given the organic mat present at all locations.

substrate had the appearance of a flooded terrestrial habitat, with the organic layer showing limited obvious signs of decomposition (e.g., the layer was a mat with woody stems and plant material still clearly visible). Sampling targeted the transitional zone beneath the organic mat (~7-10 cm below the top of the mat), where there was clear evidence of soil but also of interspersed organic matter. For each sample, sediment from two subsampling locations approximately 10 to 20 m apart were homogenized to achieve the desired volume for analysis. Samples were collected into 250 mL jars and kept cold until shipment to the laboratory.

3.3.3 Laboratory Analysis

Sediment samples were submitted to ALS (Burnaby, BC) for analysis. The samples were transported in coolers with ice packs and shipped to ALS at the earliest convenience to minimize the possibility of exceeding the recommended hold-times between when the samples were collected and analysis.

Methylmercury in sediment was analyzed according to standard methods from the US Geological Survey. Methylmercury is extracted from the sample and analyzed by cold vapour atomic fluorescence spectrophotometry. Total mercury in sediment is also analyzed by cold vapour atomic fluorescence spectrophotometry, following US EPA methods. Moisture content was determined gravimetrically.
Area (Laka	Designation	Ushitat	Year									
Area/Lake	Designation	парна	2016	2017	2018	2019	2020	2021	2022	2023		
Whale Tail Lake Impoundment ⁺	NF	Depositional	G	G&C	G&C	G	G&C	G	G	G&C		
		Inundation	S1	-	-	-	-	*	S	S		
Lake A20 Impoundment ⁺	NF	Depositional	G	G&C	G	G	G&C	*	G	G&C		
		Inundation	-	-	-	-	-	*	S	S		
Lake A65 Impoundment ⁺	NF	Depositional	-	-	G	G	-	*	-	-		
		Inundation	S1	-	-	-	-	*	S	S		
Kangislulik Lake ²	NF	Depositional	G	G&C	G	G	G&C	*	G	G&C		
Lake A76	MF	Depositional	G	G&C	G	G	G&C	G	G	-		
Lake DS1	FF	Depositional	G	G&C	G	G	G&C	*	G	-		
Inuggugayualik Lake	Reference	Depositional	G	G&C	G	G	G&C	*	G	G&C		
Pipedream Lake	Reference	Depositional	G	G&C	G	G	G&C	*	G	G&C		
Lake 8	Reference	Depositional	-	-	G&C	G	G&C	-	-	-		
Lake D1	Reference	Depositional	-	-	G&C	G	G&C	-	-	-		
Lake B3	Reference	Depositional	-	-	-	-	G&C	-	G	-		

Table 3-1. Summary of sediment chemistry samples collected for total mercury and methylmercury analysis.

Notes:

⁺ Minor flooding of impoundment, limited to Whale Tail (south basin). Extensive during 2019 and 2020 sampling (i.e., connectivity between impounded lakes).

¹ Soil samples collected along Whale Tail Lake shoreline in 2016 as part of baseline studies.

* Samples were collected but an error at the lab resulted in these samples being discarded prior to analysis. Refer to the ALS Corrective Action Report in the 2021 MMP report (see **Appendix B2** in Azimuth, 2022).

NF = near-field, MF = mid-field, FF = far-field.

"-" = data not collected as per the Mercury Monitoring Plan (Azimuth, 2023b).

C = Sediment core samples; G = Sediment grab samples; S = soil samples from the shoreline area (2016) or sediment samples from the inundated area (2019–2023).

Shading indicates the status of the lake:

blue = baseline and reference areas (Control designation)

orange = post flooding (Impact designation)

Refer to tabulated data in Appendix B1 for the number of samples collected at each area.

3.4 Quality Assurance / Quality Control

3.4.1 Field QA/QC

For field QA, field staff implemented precautions to avoid cross-contamination between sampling areas by rinsing and cleaning the sediment sampling gear (Petite Ponar grab, stainless steel compositing bowls, spoons, corer, coring spatula) using site water and phosphate-free cleaning detergent.

Field QC measures for sediment grab and core sampling were conducted on approximately 10% of samples. These measures included field duplicates to characterize spatial heterogeneity and to assess consistency in field methodology, and filter swipes of the sampling equipment to assess the potential for cross-contamination between samples. All field QC results are provided in Appendix A of the 2023 CREMP report (Azimuth, 2024).

Field duplicate RPD DQOs were set at 1.5-times the laboratory DQOs (i.e., 1.5 x 40% for total mercury and 1.5 x 30% for methylmercury). The RPDs met the DQOs for total mercury and methylmercury. The field duplicate results indicate good field collection methods and a high degree of replicability in sampling. Mercury was not detected in the sediment grab and core equipment filter swipes.

3.4.2 Laboratory QC

The laboratory QC program for total mercury and methylmercury analysis in sediment was completed as part of the 2023 CREMP (Azimuth, 2024). The laboratory QC program consisted of laboratory duplicates, method blanks, and certified reference materials (CRM) or laboratory control samples (LCS). The distinction between the latter two types is that CRMs are commercially available while LCSs are prepared by the laboratory. All laboratory QC measures met ALS' data quality objectives (see Appendix A in Azimuth, 2024).

3.5 Results and Discussion

Total mercury and methylmercury concentrations in sediment samples collected from 2016 to 2023 are shown in **Figure 3-1**. The ratios of methylmercury to total mercury (%MeHg) in sediment are shown in **Figure 3-2**. Tabulated sediment mercury results are provided in **Appendix B1**.

Total Mercury

- Total mercury concentrations were below the CCME interim sediment quality guideline (ISQG) of 170 μg/kg dry weight in all samples collected in 2023.
- **Baseline/reference conditions** total mercury concentrations varied spatially across lakes during the baseline sampling period. Between 2016 and 2018, clear patterns were evident, with reference lakes NEM, PDL, and INUG consistently having lower total mercury concentrations in sediment

compared to the impoundment and downstream areas (i.e., generally less than 50 μ g/kg versus generally > 40 μ g/kg dw). This pattern was still evident at reference areas in 2023.

- Impoundment post-inundation there were no appreciable temporal patterns in WTS or A20 relative to creation of the Impoundment. In 2023, total mercury concentrations in the inundation zone samples were similar to the deposition zone samples.
- **Downstream post-inundation** consistent with the Impoundment results, there were no temporal patterns apparent for total mercury in relation to inundation.

Methylmercury

- Baseline/reference conditions methylmercury sampling was limited to WTS between 2016 and 2018, where concentrations were typically < 2 µg/kg dw. Analysis was expanded in 2019 to include downstream and reference stations; given that the SWTC was not operational until 2020, conditions could be considered baseline for the downstream stations. Methylmercury concentrations ranged up to ~ 2.5 µg/kg dw across the reference lakes.
- Impoundment post-inundation sampling in the Impoundment from 2019 through 2021 focused on the depositional zones only in WTS and A20 and showed no marked increases in methylmercury concentrations. In 2023, concentrations were similar to baseline at depositional areas in both the WTS and A20 basins of the Impoundment. In 2023, methylmercury concentrations continued to be highest in the inundation zone samples (shown as *flooded soil* in Figure 3-1), ranging up to 21 µg/kg dw.
- Downstream post-inundation In 2023, concentrations at KAN were within the range of reference/baseline. Methylmercury concentrations showed a marked increase at depositional zones in KAN in 2022 relative to previous years, ranging up to 16 μg/kg dw. It is not clear what was driving the 2022 concentrations, but appears to have been an anomaly based on results from 2023.

Methylmercury: Total Mercury Ratios

The relative amount of methylmercury compared to total mercury (%MeHg) in environmental media (e.g., water, sediment) provides information on how much mercury is in the methylated form in the system. When assessed over space and/or time, the %MeHg metric provides insights into differences in methylmercury production.

- **Baseline/reference conditions** the ratio of methylmercury to total mercury (%MeHg) was generally less than 2.5%, but has ranged up to 6.4 % in reference areas in years since baseline.
- Impoundment post-inundation Similar to sediment methylmercury concentrations, the %MeHg in 2019 through 2021 in the depositional zones in WTS and A20 showed no marked increases. In

2022, %MeHg was higher in the Impoundment compared to baseline/reference. Though %MeHg was lower in 2023, it still remained higher than baseline/reference in depositional zones in the Impoundment. In 2022 and 2023, the inundation zone had the highest %MeHg. This was expected, as higher methylation rates in newly flooded soils are the main driver of the 'reservoir effect' that propagates elevated methylmercury into the food web (Hall et al, 2005).

 Downstream post-inundation – In 2023, %MeHg in KAN appeared to be similar to baseline/reference. In 2022, there was a marked apparent increase in %MeHg in depositional zones in KAN relative to previous years, ranging from approximately 4 to 21%. Based on 2023 results, it appears as though the increased methylmercury observed in 2022 was an anomaly. This is corroborated by a lack of a clear signal in surface water methylmercury concentrations in KAN compared to baseline/reference. Sediment cores will be collected in 2026 to verify the results.

3.6 Sediment Chemistry Summary

In 2023, sediment samples were collected from the depositional areas in the MMP area lakes and for a second year in a row from inundated areas within the Impoundment. Flooded terrestrial soils are known to drive increased methylmercury production in reservoirs, there is an expectation that methylmercury concentrations should be higher within the inundation zone sediment (formerly soils).

Total mercury concentrations were below the CCME sediment quality guidelines at all areas for depositional and inundation zone samples. Total mercury concentrations in the depositional zones of the Impoundment as well as downstream exposure areas in 2023 were similar to baseline/reference conditions.

In 2023, methylmercury concentrations in depositional zone samples in the Impoundment were similar to baseline. The inundation zone samples had the highest methylmercury concentrations, which is expected as these areas are the main driver of the 'reservoir effect' in which bacterial decomposition of organic matter in inundated soils results in the methylation of inorganic mercury to form methylmercury.

Methylmercury concentrations in depositional zone sediments in KAN were similar to baseline and within reference range in 2023. This suggests, the increase in KAN observed in 2022 was an anomaly and unlikely to be related to mining activities.

For 2024, sediment grabs will be collected from depositional zones in the MMP area lakes and analyzed for total mercury as per the *CREMP 2022 Plan Update (Azimuth, 2022c)* to confirm that concentrations are within baseline/reference across sampling areas and remain below the CCME guideline in the Impoundment and at downstream areas. Methylmercury will not be analyzed in the sediment grabs from depositional zones in 2024. Trends in methylmercury in depositional zones will

be reviewed during the next sediment coring program planned for 2026. Sediment sampling within the inundation zone will be repeated in 2026.

Figure 3-1. Total mercury and methylmercury (µg/kg dry weight) in sediment samples from Whale Tail area lakes since 2016.

Notes: All data in figure are shown on a log-scale. All total mercury concentrations are below the 170 µg/kg dry weight CCME interim sediment quality guideline for the protection of aquatic life (red dashed line) and below the 486 µg/kg dry weight CCME probable effect level (not shown in figure).

Figure 3-2. Ratio of methylmercury to total mercury (%MeHg) in sediment samples from Whale Tail area lakes since 2016.

4 SMALL-BODIED FISH

4.1 Key Findings for Small-bodied Fish in 2023

- Ninespine Stickleback and Slimy Sculpin in the Impoundment showed marked increases in tissue mercury concentrations in 2020 that have persisted through 2023.
- The temporal patterns seen to date for Ninespine Stickleback suggest that conditions may have stabilized somewhat as tissue mercury concentrations neither continued to rise sharply nor showed clear signs of decreasing back to baseline levels.
- For Slimy Sculpin, tissue mercury concentrations have continued to increase, though at a lesser extent than what was observed in the first year post-Impoundment (i.e., from 2019 to 2020).
- Evidence for downstream changes in small-bodied fish mercury concentrations in KAN is weak; there was no clear pattern of temporal increases relative to the reference lakes, which matches the results of the surface water and sediment components of the MMP.

4.2 Overview

Slimy Sculpin and Ninespine Stickleback were collected opportunistically from 2018 to 2021 as part of a multi-year research study looking at changes in productivity within the Impoundment. Small-bodied fish are not a core component of the MMP, but the timing of the productivity study provided an opportunity to collect information about mercury bioaccumulation lower in the food web in the initial years after flooding without much incremental effort. Sampling was led by researchers at the University of Waterloo.

Slimy Sculpin and Ninespine Stickleback were collected in 2023 by C. Portt and Associates with assistance from Kilgour and Associates. The small-bodied fish program coincided with the EEM program. Azimuth provided input on selecting fish to be analyzed for total mercury and stable isotope analysis.

Slimy Sculpin typically prey on a wide variety of bottom-dwelling (benthic) organisms, which include chironomids, gastropods, fish eggs, and small fish (Scott and Crossman, 1973); isotopic signatures from other northern lakes indicate a range of diets that could include the pelagic environment (Arciszewski et al, 2015). Ninespine Stickleback also target aquatic insect larvae, but have a more pelagic (water column) diet that includes zooplankton (Scott and Crossman, 1973). Data analyses for small-bodied fish focus on spatial and temporal trends in total mercury, with stable isotope data used to provide insights into the feeding ecology of each species.

Total Mercury

All of the total mercury measured in fish is conservatively assumed to be methylmercury. This is generally the case for large, predatory species, in which approximately 95% of the total mercury measured in fish consists of methylmercury (Bloom, 1992). Smaller, non-predatory species of freshwater fish may have a lower fraction of methylmercury relative to total mercury (Lescord et al, 2018). However, as these fish typically have much lower total mercury concentrations compared to the large, predatory species, the lower methylmercury fraction is less important to take into consideration.

Stable Isotopes

Stable isotopes provide insights into trophic position (i.e., how high in the food chain a fish is feeding; $\delta^{15}N$) and which energy pathway is predominant (i.e., does a fish feed more from the water-column [pelagic] pathway or from the bottom substrate [benthic] pathway; $\delta^{13}C$). Depending on how mercury is distributed in the food web and how that evolves, changes in feeding ecology affecting trophic position or energy pathway could lead to corresponding changes in tissue mercury concentrations. This is particularly true within the Impoundment after flooding as terrestrial habitat transitions to aquatic habitat. Thus, understanding spatial and temporal patterns in feeding ecology can be used to help explain patterns in mercury bioaccumulation.

4.3 Methods

4.3.1 Field Methods

Sample Collection

Fish were collected by backpack electrofishing wadable areas of the shoreline. Slimy Sculpin and Ninespine Stickleback can have different habitat preferences, and the increase in lake elevation in the Impoundment resulted in shifts in catch-per-unit-effort (CPUE) for each species in Lake A65 and Lake A20. Before flooding, Slimy Sculpin were easier to catch (higher CPUE) than Ninespine Stickleback. This changed in 2019, when it became relatively easier (higher CPUE) to catch Ninespine Stickleback in the A65 and A20 basins of the Impoundment. The difference in CPUE is most likely related to differences in accessible, wadable habitat. Given the uncertainty regarding potential population-level changes to either of the species, both were retained in the study after inundation to ensure that temporal trends could be tracked.

Sample Selection for Mercury Analysis

Azimuth selected a subset of the Ninespine Stickleback and Slimy Sculpin samples collected for total mercury analysis. Samples were selected after reviewing the length distributions for each species. The number of small-bodied fish that were submitted to Biotron for analysis is provided in **Table 4-1**. Size

classes with sufficient sample numbers across collection years and lakes were selected to allow comparisons of spatial and temporal tissue mercury concentrations. For Ninespine Stickleback, two size classes were identified; samples between 30-39 mm and between 40-49 mm were selected. Ninespine Stickleback were only captured in MMP areas Whale Tail (south basin) and Lake A20. All six samples from A20 and 23 from Whale Tail (south basin) were submitted for analysis in 2023. For Slimy Sculpin, which had a more consistent distribution of samples among lakes/years, up to ten samples targeting year-1 fish (i.e., total lengths between 27-45 mm) were selected. Some slightly larger Slimy Sculpin (up to 67 mm) collected from Lake 8 were selected for analysis to match the sizes of fish collected and analyzed in 2021.

4.3.2 Laboratory Methods

Slimy Sculpin samples collected in 2023 were processed by Kilgour and Associates and Ninespine Stickleback were processed by North South Consultants. Samples collected from 2018 to 2021 were processed at the University of Waterloo. Standard operating procedures for processing small-bodied fish were provided to each laboratory to ensure consistency across laboratories and years.

In 2023, after removing the viscera and otoliths, fish carcasses were placed in Whirlpak® bags and shipped frozen to Biotron at the University of Western Ontario. Upon arrival carcasses were weighed, then placed in labeled vials, covered with Kimtech® tissues, and placed in the freeze dryer. Dried samples were homogenized and analyzed for total mercury analysis in tissue using a Milestone® DMA-80 Direct Mercury Analyzer as per U.S. EPA method 7473 (US EPA, 2007). Mercury concentrations were converted to wet weight assuming 78% moisture content in the muscle tissue.

A subsample of the homogenized, freeze-dried samples was submitted for stable isotope analysis at the Stable Isotopes in Nature Laboratory (SINLAB) at the University of New Brunswick. Measurements of ¹³C and ¹⁵N isotopes were determined through combustion conversion of sample material to gas through three elemental analyzers, a 4010 Elemental Analyzer (Costech Instruments, USA), a CE NC2500 (Carlo Erba; Italy), and a FlashEA 1112 (Thermo-Fisher Scientific; USA). A complete description of the analytical method, including analytical precision, reference materials, and QA/QC procedures is available on the SINLAB website⁹.

⁹ https://www.isotopeecology.com/

	Designation		Nine	spine Sti	ckleback		Slimy Sculpin					
Area/Lake				Year [†]			Year [†]					
		2018	2019	2020	2021*	2023§	2018	2019	2020	2021*	2023	
Whale Tail Lake Impoundment	NF	n=8	n=6	n=10	n=5	n=23	n=5	n=5	n=5	n=10	n=10	
Lake A20 Impoundment	NF	n=2	n=10	n=10	n=5	n=6	n=5	-	n=5	n=5	n=9	
Lake A65 Impoundment	NF	-	n=10	n=10	n=2	-	n=5	-	n=5	n=5	-	
Kangislulik Lake	NF	n=1	n=2	n=4	n=5	-	n=5	n=5	n=5	n=5	n=10	
Lake 8	Reference	-	-	-	-	-	n=5	-	n=5	n=5	n=10	
Lake A44	Reference	-	-	n=1	n=4	-	-	n=5	n=5	n=5	-	
Lake B3	Reference	-	-	n=1	n=5	-	-	-	n=5	n=10	-	
Lake D1	Reference	-	-	-	_	-	-	-	n=5	_	-	

Table 4-1. Summary of small-bodied fish samples submitted for total mercury analysis.

Notes:

+ Minor flooding in the Impoundment was limited to Whale Tail (south basin). Extensive flooding during 2019 and 2020 sampling (i.e., connectivity between WTS, A65, and A20).

* Due to delays in processing and analysis, 2021 small-bodied fish mercury results were only received in January 2023 and were included in the 2022 MMP report (Azimuth, 2023). § Ninespine stickleback were only captured from Whale Tail (south basin) and Lake A20 in 2023.

NF = Near-field.

blue = baseline and reference areas (Control designation)

orange = post flooding (Impact designation)

"n =" = number of fish collected and submitted for analysis.

"-" = data not collected as per the Mercury Monitoring Plan (Azimuth, 2023b).

4.3.3 Data Analysis

Mercury

Whole-body (carcass) mercury concentrations for each species were plotted across all years and areas sampled as follows:

- Mercury concentrations by year,
- Mercury concentrations by length (mm),
- Mercury concentrations within the context of the stable isotope data, are discussed in the following section.

Stable Isotopes

Stable isotope analysis¹⁰ (SIA) was done on a subset of the small-bodied fish submitted for mercury analysis to understand the feeding relationships among and within species and across the sampling areas. Stable isotopes¹¹ are slightly different types of the same element (light & heavy) that are stable in the environment. Both types participate in chemical and biological reactions, but at different rates, which leads to patterns in the ratios of these isotopes in the environment. The ratios of carbon and nitrogen, two principal elements in biological tissue, can be used to quantify the feeding ecology of fish.

Nitrogen isotopes are used to determine the trophic position of consumers in aquatic systems (i.e., where they are within the food chain). With each increasing trophic level in the food chain organisms become more enriched in the stable isotope nitrogen-15 ($\delta^{15}N$). For example, the $\delta^{15}N$ value in a mature Lake Trout that eats other fish will be higher than in a Slimy Sculpin or Ninespine Stickleback that mostly eat invertebrates. Fish typically change their diet as they grow and tend to feed at higher trophic positions as they get larger. As trophic levels increase, i.e., as the relative position of a fish in the food chain increases, the $\delta^{15}N$ values increase. The length- $\delta^{15}N$ relationship essentially shows how feeding preferences affect mercury concentrations in fish tissue. Therefore, we expect higher tissue mercury concentrations in fish that feed higher in the food chain.

Carbon isotopes (δ^{13} C) trace the flow of energy, and therefore the flow of mercury, through food webs. Carbon isotopes can be used to determine whether fish are feeding more from the benthic or pelagic food webs. The results of the SIA analysis are provided in **Section 4.5**.

¹⁰ Stable isotope analysis is not a core component of the MMP.

¹¹ Isotope ratios are represented by the symbol δ , which is the Greek letter delta and is often used to signify difference. In this case, delta refers to the isotopic ratio of sample relative to that of a standard reference material. Units are %, which is per mil or parts per thousand.

4.4 Quality Assurance/Quality Control

Data quality was assured throughout sample analysis using specified standardized procedures, using laboratories that have been certified for all applicable methods, and staffing the program with experienced field sampling technicians. Samples were collected according to standard care and QA/QC procedures. Whole fish samples were placed in individual Whirl-Pak® bags, labeled with sample ID and date, and placed in a freezer in the field. Samples were placed in coolers with ice or dry ice during shipment to the laboratory.

Laboratory QC results for the 2023 small-bodied fish tissue samples were reported by Biotron.

- The average RPD in 2023 laboratory duplicate samples analyzed for total mercury was 8%.
- The average matrix spike RPD for total mercury was 2%.
- All data were retained for analysis and there were no flags on quality control violations.

4.5 Results and Discussion

Of the fish collected in 2023, 39 Slimy Sculpin and 29 Ninespine Stickleback fish were submitted for total mercury and stable isotopes analyses. Raw data are tabulated in **Appendix C2**. Data were plotted to highlight key spatial and temporal trends, as follows:

- Total mercury concentrations by year, species, and sampling area are shown in **Figure 4-1**. This plot highlights temporal trends in tissue mercury across the Impoundment, downstream exposure areas, and reference lakes.
- Total mercury concentrations by year, species, size, and sampling area are shown in **Figure 4-2**. This plot explores the influence of fish size on mercury concentrations. While efforts were made to collect similar fish sizes for each species across years and locations, this was not always possible.
- Stable isotope results by year, species, and sampling area are shown in **Figure 4-3**. This plot shows temporal and spatial trends in isotopic signatures that reflect potential changes in feeding ecology that could help explain mercury bioaccumulation patterns.
- Stable isotope results (by year, species, and area) with point fill showing the associated mercury concentration are shown in **Figure 4-4**. This plot simultaneously looks at changes in feeding ecology and mercury concentrations to visualize how feeding ecology may affect mercury concentrations.

Mercury and stable isotope results are presented and discussed below.

Total Mercury

Baseline/reference conditions – tissue mercury concentrations for both species were generally < 0.05 mg/kg wwt (**Figure 4-1**). Slightly higher concentrations (e.g., between 0.05 and 0.1 mg/kg wwt) were

seen from time to time (e.g., Slimy Sculpin at Lake D1 in 2020 and Lake 8 in 2023 and Ninespine Stickleback at Lake A44 in 2021).

Impoundment post-inundation – tissue mercury concentrations for both species showed a clear increase at the Impoundment areas (WTS, A65, and A20) in 2020 relative to baseline/reference conditions. Concentrations remain elevated in 2023. For Ninespine Stickleback, the concentrations appear to have stabilized. For Slimy Sculpin, mercury concentrations have continued to rise but to a lesser extent than what was observed between 2019 and 2020. The magnitude of increase for both species was highest in WTS, followed by A65 and A20; this trend matches the post-inundation trend in surface water methylmercury concentrations. The results do not appear to be influenced meaningfully by differences in fish sizes across years/locations (**Figure 4-2**), as no strong relationships were evident for any of the years/locations for either species. In the ELARP experimental reservoir study in Ontario, small-bodied fish increased two to three times after inundation (Bodaly and Fudge, 1999).

Downstream post-inundation – tissue mercury concentrations downstream of the Impoundment do not appear to have changed appreciably. Slimy Sculpin mercury concentrations in KAN have remained stable since 2018 and fairly consistent with the reference lakes. Mercury concentrations in Slimy Sculpin at KAN in 2023 were slightly higher than seen in previous years, but the magnitude of change was similar to what was observed at reference Lake 8 (**Figure 4-1**), suggesting that the change is likely related to environmental variability. The lack of inundation-related changes in small-bodied fish mercury concentrations in KAN is consistent with the surface water methylmercury results (**Figure 2-2**).

Stable Isotopes

Stable isotopes provide insights into feeding ecology that can help explain patterns of mercury bioaccumulation in fish.

Baseline/reference conditions – as described in **Section 4.1**, there are some general differences in feeding ecology between Slimy Sculpin and Ninespine Stickleback. The sculpin typically targets bottomdwelling (benthic) prey items whereas the stickleback targets water-column (pelagic) prey (Scott and Crossman, 1973). The stable isotope results for the reference lakes corroborate this pattern (**Figure 4-3**), with higher δ^{13} C for the sculpin relative to the stickleback where both were sampled (A44 and B3). The pattern is less evident at WTS, where there was only a slight difference in δ^{13} C between the two fish species. Lastly, there are no obvious patterns in tissue mercury concentrations related to stable isotopes at the reference lakes or during the baseline period (**Figure 4-4**).

Impoundment post-inundation – the stable isotope results for the Impoundment show two interesting trends:

1. A shift to more pelagic feeding (a shift to the left on the δ^{13} C axis) generally occurred between 2018 and 2021 at WTS (Figure 4-3). This is apparent from the progressive change to more

negative (lower) δ^{13} C values between 2018 and 2020, particularly for Slimy Sculpin. In 2023, both species appear to more aligned with pelagic feeding (δ^{13} C ~ -28‰). For Ninespine Stickleback, the feeding preference was fairly similar to that seen in reference lakes A44 and B3 in past events (neither sampled in 2023). Ninespine Stickleback are known generalists, feeding on zooplankton or benthic invertebrates opportunistically (Laske et al. 2022). For Slimy Sculpin, the shift to a more pelagic diet in WTS (δ^{13} C ~ -28‰) is a departure from the more benthic-focused diet observed in the reference lakes ((δ^{13} C ~ -24 to -20‰). This shift may be due to a relative lag in benthic invertebrate production in newly flooded nearshore habitat.

2. As noted for previous years, there is a reasonably consistent pattern of progressively higher $\delta^{15}N$ (y axis) values from A20 to A65 to WTS that existed prior to inundation (Figure 4-3). As $\delta^{15}N$ values are indicative of trophic position, this pattern could be responsible for some of the spatial differences observed in tissue mercury concentrations within the Impoundment. In 2023, $\delta^{15}N$ values were higher in the impoundment than have been seen previously, indicating an upward trophic shift, particularly for Slimy Sculpin. This type of change would be expected to result in increased tissue mercury concentrations, which may be why we observed the bigger increases in Slimy Sculpin at WTS.

Laske et al (2022) modelled fish growth, feeding and mercury uptake in Ninespine Stickleback using a bioenergetics model for a range of temperatures and diets (pelagic vs benthic). Relative to the two diets, their model results showed higher tissue mercury concentrations for Ninespine Stickleback on a pelagic diet relative to a benthic diet. The authors attributed the results to differences in energy content in the diets (i.e., they used 2256 J/g for pelagic and 3500 J/g for benthic). It is likely that the same mechanisms would affect Slimy Sculpin concentrations. Thus, the higher use of the pelagic-based food web may be responsible for some of the observed increase in tissue mercury concentrations in both species.

Downstream post-inundation – In 2023, there was a slight shift in trophic position (higher $\delta^{15}N$) for Slimy Sculpin at KAN. This change was not observed in reference areas and could affect mercury bioaccumulation. However, tissue mercury concentrations and surface water methylmercury concentrations did not change appreciably in 2023 compared to baseline.

4.6 Small-bodied Fish Summary

The primary reason small-bodied fish are included in the MMP is to track temporal and spatial patterns in mercury at a key step in the food chain that ultimately leads to large-bodied fish. While the MMP's main focus is on mercury concentrations in large-bodied fish, the results for small-bodied fish help to understand how this northern ecosystem is responding to the creation of the Impoundment. This is particularly important for understanding the overall trajectory of the 'reservoir effect' (e.g., to know when to expect fish mercury concentrations to start decreasing). Both small-bodied fish species in the Impoundment showed marked increases in tissue mercury concentrations in 2020 that persisted in 2023. The temporal patterns seen to date for Ninespine Stickleback suggest that conditions may have stabilized somewhat as tissue mercury concentrations neither continued to rise sharply nor showed clear signs of decreasing back to baseline levels. For Slimy Sculpin, concentrations have continued to increase, though at a lesser extent than what was observed in the first year post-Impoundment (i.e., from 2019 to 2020).

Downstream, in KAN, there was no strong evidence of temporal increases in mercury concentrations relative to the reference lakes. This pattern is consistent with the surface water and depositional sediment results, where increases were not seen in KAN in 2023.

The supplemental small-bodied fish mercury study is not planned for 2024 as per the *Mercury Monitoring Plan* (Azimuth, 2023b).

Figure 4-1. Fish tissue mercury concentrations (mg/kg ww) in Ninespine Stickleback (NSSB) and Slimy Sculpin (SLSC) collected at Whale Tail area lakes, 2018–2023.

Lake Type 😝 Impoundment 😝 Downstream 🖶 Reference

Figure 4-2. Fish tissue mercury concentrations (mg/kg ww) and fish sizes (length; mm) for Ninespine Stickleback (NSSB) and Slimy Sculpin (SLSC) collected at Whale Tail area lakes, 2018–2023.

Year ● 2018 ■ 2019 ♦ 2020 ▲ 2021 ▼ 2023

Figure 4-3. Mean δ¹⁵N and δ¹³C signatures (± standard deviation), of Ninespine Stickleback (NSSB) and Slimy Sculpin (SLSC) collected at Whale Tail area lakes, 2018–2023.

Year 🔶 2018 🔶 2019 🔶 2020 🔶 2021 🔶 2023

AZIMUTH

Figure 4-4. Stable isotope δ^{15} N and δ^{13} C signatures and mercury concentrations in tissue from Ninespine Stickleback (NSSB) and Slimy Sculpin (SLSC) collected at Whale Tail area lakes, 2018–2023.

5 LARGE-BODIED FISH

5.1 Key Findings for Large-bodied Fish in 2023

- Mercury concentrations in Lake Trout from Whale Tail Lake increased sharply in 2023 (year 4 after impoundment¹²) relative to previous sampling events. The estimated mean tissue mercury concentration for a 550 mm Lake Trout in 2023 was 1.5 mg/kg ww, increasing from 0.61 mg/kg ww in 2020, when concentrations were virtually unchanged relative to baseline/pre-impoundment conditions.
- The estimated mean tissue mercury concentration for a 550 mm Lake Trout in 2023 from Whale Tail Lake was nearly equal to the peak mercury concentration predicted in the FEIS (i.e., 1.55 mg/kg ww, Azimuth, 2019).
- Downstream, in KAN, tissue mercury concentrations in Lake Trout in 2023 were similar to baseline/pre-impoundment conditions. The estimated mean concentration for 550 mm Lake Trout from KAN was slightly lower in 2023 (0.34 mg/kg ww) than in 2015 and 2020 (0.47 mg/kg ww). The apparent decrease in the estimated mean concentration in 550 mm Lake Trout from KAN in 2023 is likely due to low numbers of larger fish.

5.2 Overview

Lake Trout are the target species for monitoring changes in large-bodied fish for the MMP. Large-bodied fish tissue sampling is completed on a three-year cycle, coinciding with the EEM biological monitoring program. An overview of the fish sampling events for the MMP to date is provided in **Appendix C1**.

In 2023, Lake Trout were captured from Kangislulik¹³ Lake, Lake 8, and Lake D1 as part of the EEM sampling program, with additional samples collected from Whale Tail Lake as per the MMP. A select number of fish of similar size classes as previous years were retained for mercury analysis in muscle tissue.

The MMP committed to implementing further risk-based analyses if measured fish tissue concentrations exceed the predicted peak mercury concentration for Lake Trout in the Impoundment (Azimuth, 2019).

¹³ Fish collected from KAN in 2023 were archived pending total mercury results in Lake Trout from Whale Tail Lake. Based on the increase in mercury concentrations observed in Lake Trout from Whale Tail Lake in 2023, fish from KAN were submitted to Biotron for total mercury analysis. Results are included in this years MMP report.

¹² Peak mercury concentrations in large-bodied fish can occur anywhere between four and 12 years after the creation of most reservoirs.

While there was a notable increase in Lake Trout mercury concentrations in 2023, they remain within the predicted peak mercury concentration.

5.3 Field Methods

Fish tissue data have been collected under various programs. Methods for each sampling event dating back to baseline sampling in 2015 are provided in **Appendix C1**.

In 2023, Lake Trout were captured using gill nets and filleted in the field. Boneless, skinless dorsal muscle was taken from anterior to the dorsal fin. Tissue samples were placed in labelled Whirl-Pak[®] bags, frozen, and transported to the University of Waterloo.

5.4 Laboratory Methods

Mercury

Fish tissue samples collected in 2015 were sent to ALS Laboratories in Burnaby, BC for percent moisture and metals analysis (including total mercury). Concentrations of total mercury in tissue were determined for wet and dried tissue samples using atomic fluorescence spectrophotometry or atomic absorption spectrophotometry, adapted from US EPA Method 245.7.

Fish tissue samples collected in 2018, 2020, and 2023 were subsampled at the University of Waterloo using sterilized scissors and tweezers, placed in labelled vials, covered with Kimtech[®] tissues, and placed in the freeze dryer. Dried samples were homogenized and submitted to Biotron at the University of Western Ontario for analysis of total mercury in tissue using a Milestone[®] DMA-80 Direct Mercury Analyzer as per U.S. EPA method 7473 (US EPA, 2007). Mercury concentrations were converted to wet weight assuming 78% moisture content in the muscle tissue.

Ageing

Lake Trout collected in 2015, 2020, and 2023 were aged by Louise Stanley, a fish ageing expert who provides consulting services to C. Portt and Associates. Otoliths were mounted whole on a glass slide with CrystalBond thermoplastic adhesive. Otoliths which could not be aged whole were ground to the core on one side, flipped to adhere the core area to the glass, and then ground to a thin section on the other side. Age was estimated based on the number of annuli counted using transmitted light and a Leica GZ6 Stereo Zoom microscope.

5.5 Data Analysis

Large-bodied fish data analysis included modelling temporal and spatial length-mercury relationships across areas sampled in years 2015 onwards. Data analysis also included estimating mercury concentrations and associated confidence limits for a 550 mm Lake Trout. Using standardized sizes, like 550 mm, allows for more robust spatial or temporal comparisons by explicitly taking fish size into consideration. Finally, we compared 2023 mercury concentrations estimated for 550 mm Lake Trout to the approximate three-fold increase (1.55 mg/kg ww) and associated 95% confidence interval (1.36 to 1.76 mg/kg ww) predictions made for the FEIS (Azimuth, 2019).

Mercury and Ancillary Data

Fish meristic data and sampling details were recorded on field data sheets and entered into an Excel database. Ageing data from Cam Portt and Associates and mercury data from Biotron were also entered into the Excel database upon receipt. The large-bodied fish database is provided in **Appendix C1**.

Characterization of Size-Mercury Relationships

For the analysis of pre-impoundment/baseline data and post-impoundment fish mercury data, we considered the following elements: catch data, length and age data, general mercury relationships, and length-mercury relationships. These are described below.

Catch and data summary – Catch refers to the fish that were caught and selected for mercury analysis. Because sampling for mercury analysis is conducted to characterize a range of fish sizes, the focus is on sampling evenly across the relevant size range of a species, rather than randomly sampling from all fish caught (see length-mercury relationships below for more details). Catch data for each year and location are provided in **Table 5-1**. See **Table 5-2** for a summary of sample sizes and the mean and range for length, weight, condition¹⁴, age, and mercury concentrations.

Length and age – these two variables provide information on the size and age of Lake Trout.

General mercury-related relationships – Length, weight, and age can all influence fish mercury concentrations. Plots were used to explore the following key relationships:

- Length-weight: the length-weight relationship shows how weight increases as fish get longer. This relationship is usually strong in that the range of observed weights for a given fish length is narrow relative to the other relationships. Consequently, this plot is useful to identify outliers or anomalous results (e.g., transcription errors).
- *Age-length*: age-length relationships show how fish length increases as fish get older. These relationships are typically variable and show a wide range of length values for each age. This variability makes it harder to identify outliers, but the plots can still provide useful insights into growth patterns and how they influence mercury concentrations.

¹⁴ Condition is a measure of fish weight relative to its length. It is calculated as weight/length³ x 100 and is represented by the letter K. Higher condition fish weigh more for their size compared to lower condition fish.

Length-mercury: length-mercury is a well-established relationship, because mercury concentrations increase as fish length increases. Length is simple to measure and highly repeatable, so measurement error tends to be low. Mercury concentrations are also positively correlated to weight and age, but measurement error for both those variables relative to length is higher. For example, if the age is off by a year that could mean a 100% error for a year-old fish and the time since a fish's last meal can influence weight. This makes weight and age correlations less useful than length, particularly for comparing patterns over time or space.

When looking at patterns in fish mercury concentrations over time or space, it is important to consider fish size or length. Failing to do so can lead to biased results. For example, tissue mercury concentrations are known to increase as a fish length increases. While sampling targets similar number of fish in each range of size classes, there are almost always differences in sizes of fish caught. Therefore, the best way to remove potential size-related bias is to characterize the length-mercury relationship then use that relationship to estimate mercury concentrations for a specific fish size (i.e., standardized sizes). The approach we used to characterize or model the length-mercury relationships is presented in detail in **Appendix D**.

5.6 Quality Assurance/Quality Control

Data quality was assured throughout sample analysis using specified standardized procedures, by using laboratories that have been certified for all applicable methods, and by staffing the program with experienced technicians. Samples were collected according to standard care and QA/QC procedures:

- Tissue samples were placed in individual Whirl-Pak[®] bags, labelled with sample ID and date, and placed in a freezer in the field. Samples were placed in coolers with ice or dry ice during shipment to the laboratory.
- Technicians wore gloves while handling the fillet and worked carefully to avoid introducing foreign particles in the sample.
- The equipment (fillet knife and cutting board) was washed with phosphate-free cleaning detergent and site water and wiped dry with paper towel between samples.

QA/QC results for large-bodied fish tissue samples reported by Biotron are summarized below. The data met the DQOs for the MMP.

- The average RPD in 2023 laboratory duplicate samples analyzed for total mercury was 5% and 3% in the first and second batches of samples analyzed, respectively.
- The average matrix spike RPD for total mercury was 4% and 1% in the first and second batches of samples analyzed, respectively.
- There were no flags on quality control violations and all data were retained for analysis.

5.7 Results and Discussion

All Lake Trout tissue samples were analyzed for total mercury. It is generally assumed that the total mercury present in large predatory fish is predominantly in the form of methylmercury.

Fish Mercury Concentrations – Fish mercury concentrations for all Lake Trout caught since 2015, by area, are shown in **Figure D-1** in **Appendix D**. Note that at this stage of the assessment fish size is not considered, although size is an important factor when comparing fish mercury concentrations over time or space; this is explored further in sections that follow.

Data Overview and Catch Data – The fish mercury dataset contains 301 tissue mercury samples for Lake Trout collected since 2015 (**Table 5-1**). The results show that despite efforts to keep fish size consistent across locations, there were differences among areas and years that could bias the mercury results (**Table 5-2**). For example, mean fish length was much lower for Lake Trout from Whale Tail Lake in 2018 relative to either 2015 or 2020. This highlights the need to use the length-mercury relationships as the foundation for making comparisons across time or space.

Length and Age Frequency – We used length frequency plots and age frequency plots to compare the distribution of fish samples from each location (**Figure 5-1**). In general, the ranges of length and age were similar across locations within a given year. Larger or older individuals (i.e., > 500 mm) were sampled less frequently at Whale Tail Lake in 2015 compared to 2020 and 2023. For Kangislulik Lake, larger or older individuals (i.e., > 500 mm) were sampled less frequently in 2015 and 2023 compared to 2020. No ageing was completed in 2018.

Length-Mercury Relationships – Key results are summarized below, and detailed modelling results are provided in **Appendix D**.

- Length-mercury results for Lake Trout by lake and event are shown in Figure 5-2. The 2023 results (blue points) for WTS clearly stand out relative to previous events; this was not the case for reference lakes 8 and D1 or for downstream area Kangislulik Lake. Note that the difference was more pronounced in smaller Lake Trout (e.g., < 700 mm).
- Mercury concentrations in Lake Trout from WTS increased sharply in 2023 (year four after impoundment) relative to previous sampling events. Estimated mean tissue mercury concentration for a 550 mm Lake Trout in 2023 was 1.5 mg/kg ww. In 2020, the mean tissue mercury concentration for a 550 mm Lake Trout was 0.61 mg/kg ww, which was virtually unchanged relative to baseline/pre-impoundment conditions (0.57 mg/kg ww in 2015 and 0.60 mg/kg ww in 2018; see Figure 5-3).
- The estimated mean tissue mercury concentration for a 550-mm Lake Trout from WTS in 2023 was slightly less than the peak mercury concentration predicted in the FEIS (i.e., 1.55 mg/kg ww, see Figure 5-3 and Azimuth, 2019).

• Downstream from the Impoundment, at KAN, the estimated mean concentration for 550 mm Lake Trout was slightly lower in 2023 (0.34 mg/kg ww) than in 2015 and 2020 (0.47 mg/kg ww). The apparent decrease in the estimated mean concentration in 550 mm Lake Trout from KAN in 2023 is likely due to low numbers of larger fish.

Methylmercury concentrations in both surface water (Section 2) and in small-bodied fish tissue (Section 4) collected from the Impoundment showed clear increases starting in 2020. However, the lack of a measurable increase in Lake Trout in 2020 was not surprising. As methylmercury production ramped up during the first year of inundation, methylmercury concentrations would have increased first in sediments and water, then entered the food web. In the food web, smaller organisms with higher relative feeding and growth rates will respond more rapidly than larger organisms (e.g., a 3 g forage fish versus a 10 kg Lake Trout), consequently creating a progressive lag up the food chain. Thus, in addition to relative growth patterns, fish feeding lower in the food chain will respond more rapidly than higher trophic-position fish. Within a species like Lake Trout, smaller individuals feeding on zooplankton or small forage fish will respond more rapidly than larger, older fish feeding on larger fish (e.g., Arctic Char). The 2023 WTS Lake Trout results are consistent with this explanation (e.g., large change for small fish but no change in the largest fish). Bodaly et al (2007) and Bilodeau et al (2017) observed similar patterns in Manitoba and Quebec hydroelectric reservoirs, respectively.

The mean Lake Trout mercury concentration for a 550 mm fish in Whale Tail Lake in 2023 (i.e., 1.5 mg/kg ww) is slightly below the mean predicted peak mercury concentration (i.e., 1.55 mg/kg ww or approximately three times baseline mercury concentrations for a 550 mm Lake Trout; Azimuth, 2019) and conclusions presented in the FEIS addendum (Golder, 2018) remain applicable.

The mean Lake Trout mercury concentration for a 550 mm fish in downstream area Kangislulik Lake in 2023 (i.e., 0.34 mg/kg ww) is similar to baseline/reference concentrations and remains below the predicted peak mercury concentration. This indicates that downstream transport of mercury from the Impoundment is limited. These findings are consistent with the results to date for surface water, depositional sediment, and small-bodied fish.

The MMP committed to further risk-based analyses if measured fish tissue concentrations exceed the predicted peak mercury concentration for Lake Trout in Whale Tail Lake (Azimuth, 2019). This approach was deemed reasonable considering the low rates of fishing by residents and the non-fishing policy in the Whale Tail project area lakes. Furthermore, Azimuth (2019) explored the implications of the predicted changes in fish mercury concentrations on the basis of the number of servings⁴/month of lake trout (550 mm fish) following Health Canada (2007) guidance. Based on the 2019 mean empirical model prediction for peak fish mercury concentrations, the number of servings per month of Lake Trout (550 mm) would be approximately four for adults in general and one (1) for women of child-bearing age (based on Health Canada, 2007; Azimuth, 2019).

Table 5-1.Summary of Lake Trout muscle tissue samples submitted for total mercury analysis since2015.

Area/Lake	Designation	Year				
		2015	2018^{\dagger}	2020	2023	
Whale Tail Lake Impoundment	NF	n=21	n=15	n=30	n=25	
Kangislulik Lake	NF	n=25	-	n=25	n=25	
Lake DS1	FF	-	-	n=24	-	
Lake 8	Reference	-	n=8	n=26	n=25	
Lake D1	Reference	-	-	n=27	n=25	

Notes

⁺ Fish collected from Whale Tail in 2018 were collected from the north basin following dike construction.

Control area

Impact area

NF = near-field, FF = far-field.

"n =" = number of fish sampled.

"-" = data not collected as per the *Mercury Monitoring Plan* (Azimuth, 2023b).

Area	Designation	Voor	N Eich	Fork Length (mm)		Weight (g)		Condition (K)		Age (yrs)		Hg (ppm ww)	
Alca	Designation	real		Mean	Range	Mean	Range	Mean	Range	Mean	Range	Mean	Range
		2015	21	469	159-860	1412	37.4-7320	1.1	0.86-1.28	-	12	0.51	0.077-2.19
Whale Tail Impoundment	NE	2018	15	388	225-836	940	150-5600	1.1	0.93-1.39	-	-	0.46	0.07-3.42
		2020	30	483	238-866	1761	156-7410	1.2	0.96-1.64	-	10-9	0.60	0.26-2.35
		2023	25	428	206-878	1440	108-8760	1.2	0.91-1.35	-	11-9	1.31	0.71-2.58
Kangislulik Lake		2015	25	360	215-700	661	96.2-4670	1.1	0.91-1.36	-	10	0.21	0.072-1.07
	NF	2020	25	474	176-855	2043	64.4-6750	1.2	0.94-1.61	-	12-8	0.58	0.058-2.08
		2023	25	371	187-876	873	62.25-8430	1.1	0.9-1.25	-	10-9	0.22	0.093-0.967
Lake DS1	FF	2020	24	512	269-745	1531	199-3706	1.0	0.81-1.22	-	10-49	0.79	0.21-4.04
Lake 8	Reference	2018	8	431	204-583	988	83.3-1980	1.0	0.72-1.13	-	-	0.43	0.084-1.16
		2020	26	398	150-660	839	33.0-3263	1.0	0.8-1.24	-	10-9	0.33	0.072-1.06
		2023	25	404	190-520	824	66.6-1510	1.1	0.84-1.25	-	10-7	0.25	0.039-0.99
Lake D1		2020	27	490	169-876	2446	48.7-9530	1.1	0.87-1.53	-	10-9	0.82	0.12-2.96
	Reference	2023	25	518	193-867	2102	80.76-8660	1.1	0.58-1.36	-	11-9	0.62	0.15-1.76

Table 5-2. Lake Trout size, age, and mercury concentration data summary in Whale Tail area lakes since 2015.

Notes

n = number of fish submitted for analysis.

Range shown in brackets.

"-" = no measurement, or no data collected.

Figure 5-1. Length and age frequency for Lake Trout in Whale Tail study area lakes since 2015.

AZIMUTH

2 ·

•

Figure 5-2. Key mercury relationships for Lake Trout in Whale Tail study area lakes since 2015.

Figure 5-3. Estimated tissue mercury concentrations for a 550 mm Lake Trout in Whale Tail area lakes since 2015.

Area Designation 😐 Impact 🗘 Control 🗘 Reference

5.8 Large-bodied Fish Summary

Lake Trout were sampled in 2023 as per the *Mercury Monitoring Plan* (Azimuth, 2023b). Results in 2023, show that mercury tissue concentrations in Lake Trout (550 mm) increased in Whale Tail (south basin) to near the predicted peak mercury concentration.

The MMP has committed to implementing further risk-based analyses if measured fish tissue mercury concentrations in the Impoundment exceed the predicted peak mercury concentration for Lake Trout (Azimuth, 2019).

No MMP-related risk management measures are required at this time. The next Lake Trout sampling event is planned for 2026 as per the *Mercury Monitoring Plan* (Azimuth, 2023b).

6 SCOPE OF THE 2024 MMP

The core elements of the MMP are water, sediment, and large-bodied fish chemistry (Lake Trout). Smallbodied fish tissue chemistry is also included in the MMP which was initially part of a multi-year study investigating productivity within the Whale Tail Lake Impoundment by the University of Waterloo (2018–2021).

The primary objective of the MMP is to verify that mercury concentrations in Lake Trout are within or below the predictions¹⁵ for the Whale Tail mine. The next large-bodied fish sampling event targeting Lake Trout is planned for 2026. Based on the 2023 results and the *Mercury Monitoring Plan* (Azimuth, 2023b) the components for the 2024 MMP sampling program are summarized in **Table 6-1**.

¹⁵ Predictions in the FEIS (Agnico Eagle, 2018) were originally presented in Azimuth 2017 and were updated in Azimuth 2019 to reflect changes to the proposed flooding duration of Whale Tail Lake (South Basin) as part of the proposed expansion activities for the Whale Tail mine.

Component			oundr	nent	Dov	vnstre	eam	Reference ¹		
			A20	A65	KAN	A76	DS1			
Core MMP Components	Water		~	~	~			~	~	
	Sediment – Depositional*		~		~	~	~	✓	~	
	Sediment – Inundation*									
	Lake Trout**									
Supplemental Studies	Small-Bodied Fish									

Table 6-1. Monitoring components planned for the 2024 MMP.

Notes:

1 Sampling includes at least two of the following reference areas: INUG, PDL, Lake 8, Lake 1, Lake B3, A44.

blue = baseline and reference areas (Control designation)

orange = post flooding (Impact designation).

* Grab samples will be collected and analyzed for total mercury in 2024. The next coring program to review trends in methylmercury in sediment from depositional zones and sediment from the inundation zone are planned for 2026.

**The next sampling event for Lake Trout is planned for 2026.

7 **REFERENCES**

- Agnico Eagle Mines Limited. 2021. Meadowbank Complex 2020 Migratory Bird Protection Report. Prepared by Agnico Eagle. March 2021.
- Agnico Eagle Mines Ltd. 2019.CREMP Addendum Appendix A: Mercury Monitoring Plan for Whale Tail South Area. Report prepared by Agnico Eagle Mines Limited – Meadowbank Division. March 2019.
- Agnico Eagle. 2016. Whale Tail Pit Project Meadowbank Mine Final Environmental Impact Statement and Type A Water Licence Amendments. Amendment/Reconsideration of the Project Certificate (No. 004/ File No.03MN107) and Amendment to the Type A Water Licence (No. 2AM-MEA1525). Submitted to the Nunavut Impact Review Board. June 2016.
- Arciszewski T., M.A. Gray, C. Hrenchuk, P.A. Cott, N.J. Mochnacz, and J.D. Reist. 2015. Fish Life history, diets, and habitat use in the Northwest Territories: freshwater sculpin species. Can. Manuscr. Rep. Fish. Aquat. Sci. 3066: vii + 41 p
- Azimuth. 2024. 2023 Core Receiving Environment Monitoring Program [In Prep]. Report prepared by Azimuth Consulting Group, Vancouver, BC for Agnico Eagle Mines Ltd., Baker Lake, NU. March 2024.
- Azimuth. 2023. 2022 Core Receiving Environment Monitoring Program. Report prepared by Azimuth Consulting Group, Vancouver, BC for Agnico Eagle Mines Ltd., Baker Lake, NU. March 2023.
- Azimuth. 2023b. Mercury Monitoring Plan: Whale Tail Mine. Report prepared by Azimuth Consulting Group, Vancouver, BC for Agnico Eagle Mines Ltd., Baker Lake, NU. March 2023.
- Azimuth. 2022. 2021 Mercury Monitoring Program Whale Tail Pit Project. Report prepared by Azimuth Consulting Group, Vancouver, BC for Agnico Eagle Mines Ltd., Baker Lake, NU. March 2022.
- Azimuth. 2022b. 2021 Core Receiving Environment Monitoring Program. Report prepared by Azimuth Consulting Group, Vancouver, BC for Agnico Eagle Mines Ltd., Baker Lake, NU. March 2022.
- Azimuth. 2022c. Core Receiving Environment Monitoring Program (CREMP) 2022 Plan Update. Report prepared by Azimuth Consulting Group, Vancouver, BC for Agnico Eagle Mines Ltd., Baker Lake, NU. April 2022.
- Azimuth. 2021. 2020 Core Receiving Environment Monitoring Program. Report prepared by Azimuth Consulting Group, Vancouver, BC for Agnico Eagle Mines Ltd., Baker Lake, NU. March 2021.
- Azimuth. 2020. 2019 Core Receiving Environment Monitoring Program, Meadowbank Mine and Whale Tail Project. Report prepared by Azimuth Consulting Group, Vancouver, BC for Agnico Eagle Mines Ltd., Baker Lake, NU. March 2020.
- Azimuth. 2019. Technical Memorandum: Whale Tail Permitting Support Revised Predictions of Fish Mercury Concentrations in Whale Tail Lake (South Basin) FINAL. Prepared for Agnico Eagle Mines Ltd., Baker Lake, NU. August 2019.
- Azimuth 2018. Whale Tail Pit Project: Mercury Data Compendium and Memorandum. Prepared for Agnico Eagle Mines Ltd., Baker Lake, NU. June 2018.
- Azimuth. 2017. Whale Tail Pit Project: Predicted changes in fish mercury concentrations in the flooded area of Whale Tail Lake (South Basin). Report prepared for Agnico Eagle Mines Ltd., Baker Lake, NU. February 2017.

- Azimuth. 2015. Core Receiving Environment Monitoring Program (CREMP): 2015 Plan Update. Report prepared by Azimuth Consulting Group, Vancouver, BC for Agnico Eagle Mines Ltd., Baker Lake, NU. November, 2015.
- Bilodeau, F., Therrien, J., and R. Schetagne. 2017. Intensity and duration of effects of impoundment on mercury levels in fishes of hydroelectric reservoirs in northern Québec (Canada). Inland Waters, 7(4), 493-503.
- Bloom, N. 1992. On the chemical form of mercury in edible fish and marine invertebrate tissue. Canadian Journal of Fisheries and Aquatic Sciences 49(5): 1010-1017.
- Bodaly, R. A., and R.J. Fudge. 1999. Uptake of mercury by fish in an experimental boreal reservoir. Archives of Environmental Contamination and Toxicology, 37, 103-109.
- Bodaly, R. A., Jansen, W. A., Majewski, A. R., Fudge, R. J. P., Strange, N. E., Derksen, A. J., and D.J Green. 2007. Postimpoundment time course of increased mercury concentrations in fish in hydroelectric reservoirs of northern Manitoba, Canada. Archives of Environmental Contamination and Toxicology, 53, 379-389.
- C. Portt and Associates. 2015. Whale Tail Pit 2015 Fish and Fish Habitat Field Investigations, AEM, Meadowbank Division. 58 pp. + appendices.
- C. Portt and Associates. 2018. Whale Tail Pit 2014-2016 fish and fish habitat field investigations: Agnico Eagle Mines Ltd. Meadowbank Division. February 26, 2018.
- CCME (Canadian Council of Ministers of the Environment). 2003. Canadian water quality guidelines for the protection of aquatic life: Inorganic mercury and methylmercury. In: Canadian environmental quality guidelines, 1999. Canadian Council of Ministers of the Environment, Winnipeg, MB.
- CCME (Canadian Council of Ministers of the Environment). 1999. Canadian sediment quality guidelines for the protection of aquatic life: Mercury. In Canadian environmental quality guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg, MB.
- Golder Associates Ltd. 2019. Mine Site and Downstream Receiving Water Quality Predictions. Whale Tail Pit Expansion Project. Report Submitted to Agnico Eagle Mines Ltd, Meadowbank Division, May 2019.
- Golder Associates Ltd. 2018. Final Environmental Impact Statement (FEIS) Addendum. Whale Tail Pit Expansion Project. Submitted to Nunavut Impact Review Board. December 2018.
- Hall, B.D., V.S. Louis, K.R. Rolfhus, R.A. Bodaly, K.G. Beaty, M.J. Paterson, and K.P. Cherewyk. 2005.
 Impacts of reservoir creation on the biogeochemical cycling of methyl mercury and total mercury in boreal upland forests. Ecosystems, 8, 248-266.
- Health Canada. 2014. Guidelines for Canadian Drinking Water Quality Summary Table. Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario.
- Laske, S. M., Burke, S. M., Carey, M. P., Swanson, H. K., and C.E. Zimmerman. 2023. Investigating effects of climate-induced changes in water temperature and diet on mercury concentrations in an Arctic freshwater forage fish. Environmental Research, 218, 114851.
- Lescord, G.L., T.A. Johnston, B.A. Branfireun, and J.M. Gunn. 2018. Percentage of methylmercury in muscle tissue of freshwater fish varies with body size and age and among species. Env. Toxic. & Chem. 37: 2682-2691.

- Obrist, D., Agnan, Y., Jiskra, M., Olson, C.L., Colegrove, D.P., Hueber, J., Moore, C.W., Sonke, J.E. and D. Helmig. 2017. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution. Nature, 547(7662), pp.201-204.
- Scott, W.B. and E.J. Crossman. 1973. Freshwater fishes of Canada. Fisheries Research Bulletin 184. Fisheries Research Board of Canada, Ottawa.
- United States Environmental Protection Agency (US EPA). 1996. Method 1669: Sampling ambient water for trace metals at EPA water quality criteria levels. U.S. EPA Office of Water, Washington D.C. 35 pp.
- United States Environmental Protection Agency (US EPA). 2007. Method 7473: Mercury in solids and solutions by thermal decomposition, amalgamation, and atomic absorption spectrophotometry. Revision 0. Washington, DC. 17 pp.
APPENDICES

APPENDIX A WATER DATA APPENDIX A1 2023 LABORATORY DATA

Western 🐯 Biotron Experimental Climate Change Research

University of Western Ontario - Analytical Services

Marianna DiMauro	Date of Receipt:	August 31, 2023
Agnico Eagle Mines Limited	Client COC:	n/a
Environment Department, Meadowbank Division		
Baker Lake, Nunavut, XOC 0A0	Report ID:	2023-08-012

Via email: mdimauro@azimuthgroup.ca; imcivor@azimuthgroup.ca; efranz@azimuthgroup.ca; meadowbank.environment@agnicoeagle.com

CERTIFICATE OF ANALYSIS

Sample type & number of samples: 18 water samples;

The following analytical analyses were requested: 18 F THg/MeHg & 18 U THg/MeHg.

THg (Tekran model 2600)

R²: > 0.9975
 IPR & OPR avg: 106% & 108%
 Recovery QCS avg: 86%
 Recovery MS & MSD avg: 93% & 101%
 RPD in Sample Duplicates avg: 12%
 RPD in MS & MSD avg: 8%
 MDL: 0.05 ng/L
 MRL: 0.16 ng/L
 Method Blank avg: <MDL
 IPR recovery SD avg: 1%

MeHg (Tekran model 2700) Water

R²: > 0.9950
 IPR & OPR avg: 97% & 102%
 Recovery QCS avg: 97%
 Recovery MS & MSD avg: 93% & 94%
 RPD in Sample Duplicates avg: 8%
 RPD in MS & MSD avg: 2%
 MDL: 0.011 ng/L
 MRL: 0.034 ng/L
 Method Blank avg: <MDL
 IPR recovery SD avg: 4%

ACRONYMS:

R²: Coefficient of determination, QCS: Quality control sample, MS: Matrix spike, MSD: Matrix spike duplicate, RPD: Relative percent difference, SD: Standard deviation, IPR & OPR: Initial & on-going precision & recovery, MDL: Method detection limit, MRL: Method reporting limit

<u>Notes</u>: Calculations for MDL and MRL have been revised to comply with the EPA MDL revision 2 (EPA 821-R-16-006 - Dec 2016). Reporting limit is set to MRL. Please contact the lab if further information is required. Summarized QA/QC available upon request. All digits in the result are solely left to the discretion of the client.

COMMENTS REGARDING THIS REPORT: None.

Rod Sousa Quality Control Specialist

Date: October 17, 2023

This report may be reproduced in its entirety without consent from the reporting laboratory. Authorization must be obtained for reproduction of selected sections. Unless otherwise instructed, samples will be discarded following 30 days of this report. The parameters THg & MeHg in water by CVAFS are currently on the reporting laboratory's scope of ISO/IEC 17025 accreditation by CALA.

This report may be reproduced in its entirety without consent from the reporting laboratory. Authorization must be obtained for reproduction of selected sections. Unless otherwise instructed, samples will be discarded following 30 days of this report. The following analytical results are representative of the sample or samples as received. The precision of the lab's analysis is represented by two decimal places in the final concentration. All digits in the result are solely left to the discretion of the client.

Client Name: Marianna DiMauro

Agnico Eagle Mines Limited

 Biotron WO#:
 2023-08-012

 Report date:
 October 17, 2023

Analytical Method: TM.0811

Total Mercury (THg) - Analytical Results

Sample ID	Date Collected	Lab ID #	Prep Code	Analysis Date	Parameter Code	Sample Volume (L)	Blk Cor. THg (ng)	Final Concentration (ng/L)
INUG-152	August 22, 2023	1U	n/a	October 5, 2023	Unfiltered Total Hg	0.025	0.0096	0.38
INUG-153	August 22, 2023	2U	n/a	October 5, 2023	Unfiltered Total Hg	0.025	0.0076	0.30
PDL-117	August 22, 2023	ЗU	n/a	October 5, 2023	Unfiltered Total Hg	0.025	0.0034	<mrl< td=""></mrl<>
PDL-118	August 22, 2023	4U	n/a	October 5, 2023	Unfiltered Total Hg	0.025	0.0041	0.17
DS1-71	August 17, 2023	5U	n/a	October 5, 2023	Unfiltered Total Hg	0.025	0.0112	0.45
DS1-72	August 17, 2023	6U	n/a	October 5, 2023	Unfiltered Total Hg	0.025	0.0150	0.60
WTS-81	August 14, 2023	7U	n/a	October 5, 2023	Unfiltered Total Hg	0.025	0.0247	0.99
WTS-82	August 14, 2023	8U	n/a	October 5, 2023	Unfiltered Total Hg	0.025	0.0243	0.97
MAM-81	August 15, 2023	9U	n/a	October 5, 2023	Unfiltered Total Hg	0.025	0.0110	0.44
MAM-82	August 15, 2023	10U	n/a	October 5, 2023	Unfiltered Total Hg	0.025	0.0099	0.40
A65-5	August 20, 2023	11U	n/a	October 5, 2023	Unfiltered Total Hg	0.025	0.0212	0.85
A65-6	August 20, 2023	12U	n/a	October 5, 2023	Unfiltered Total Hg	0.025	0.0187	0.75
A20-75	August 18, 2023	13U	n/a	October 5, 2023	Unfiltered Total Hg	0.025	0.0122	0.49
A20-76	August 18, 2023	14U	n/a	October 5, 2023	Unfiltered Total Hg	0.025	0.0095	0.38
AUG-DUP-1	August 15, 2023	15U	n/a	October 5, 2023	Unfiltered Total Hg	0.025	0.0081	0.33
AUG-DUP-2	August 18, 2023	16U	n/a	October 5, 2023	Unfiltered Total Hg	0.025	0.0111	0.44
DI-Blank	August 20, 2023	17U	n/a	October 5, 2023	Unfiltered Total Hg	0.025	0.0016	<mrl< td=""></mrl<>
AUG-TB	August 20, 2023	18U	n/a	October 5, 2023	Unfiltered Total Hg	0.025	<0.0013	<mdl< td=""></mdl<>
INUG-152	August 22, 2023	1F	filtration	October 5, 2023	Filtered Total Hg	0.025	0.0067	0.27
INUG-153	August 22, 2023	2F	filtration	October 5, 2023	Filtered Total Hg	0.025	0.0078	0.31
PDL-117	August 22, 2023	3F	filtration	October 5, 2023	Filtered Total Hg	0.025	0.0024	<mrl< td=""></mrl<>
PDL-118	August 22, 2023	4F	filtration	October 5, 2023	Filtered Total Hg	0.025	0.0027	<mrl< td=""></mrl<>
DS1-71	August 17, 2023	5F	filtration	October 5, 2023	Filtered Total Hg	0.025	0.0045	0.18
DS1-72	August 17, 2023	6F	filtration	October 5, 2023	Filtered Total Hg	0.025	0.0042	0.17
WTS-81	August 14, 2023	7F	filtration	October 5, 2023	Filtered Total Hg	0.025	0.0095	0.38
WTS-82	August 14, 2023	8F	filtration	October 5, 2023	Filtered Total Hg	0.025	0.0081	0.33
MAM-81	August 15, 2023	9F	filtration	October 5, 2023	Filtered Total Hg	0.025	0.0048	0.19
MAM-82	August 15, 2023	10F	filtration	October 5, 2023	Filtered Total Hg	0.025	0.0058	0.23
A65-5	August 20, 2023	11F	filtration	October 5, 2023	Filtered Total Hg	0.025	0.0078	0.31
A65-6	August 20, 2023	12F	filtration	October 5, 2023	Filtered Total Hg	0.025	0.0065	0.26
A20-75	August 18, 2023	13F	filtration	October 5, 2023	Filtered Total Hg	0.025	0.0054	0.22
A20-76	August 18, 2023	14F	filtration	October 5, 2023	Filtered Total Hg	0.025	0.0057	0.23
AUG-DUP-1	August 15, 2023	15F	filtration	October 5, 2023	Filtered Total Hg	0.025	0.0051	0.21
AUG-DUP-2	August 18, 2023	16F	filtration	October 5, 2023	Filtered Total Hg	0.025	0.0100	0.40
DI-Blank	August 20, 2023	17F	filtration	October 5, 2023	Filtered Total Hg	0.025	0.0035	<mrl< td=""></mrl<>
AUG-TB	August 20, 2023	18F	filtration	October 5, 2023	Filtered Total Hg	0.025	<0.0013	<mdl< td=""></mdl<>
MDL (ng)							0.0013	
MRL (ng)							0.0040	

NA: Not applicable

Comments: Samples Values <MRL are solely left to the discretion of the client. MeHg higher than THg acceptability is less than 35% of Relative Percent Difference.

Legend: MRL (Method Reporting Limit) MDL (Method Detection Limit)

This report may be reproduced in its entirely without consent from the reporting laboratory. Authorization must be obtained for reproduction of selected sections. Unless otherwise instructed, samples will be discarded following 30 days of this report. The following analytical results are representative of the sample or samples as received. The precision of the lab's analysis is represented by three decimal places in the final concentration. All digits in the result are solely left to the discretion of the client.

Client Name: Marianna DiMauro

Agnico Eagle Mines Limited

 Biotron WO#:
 2023-08-012

 Report date:
 October 17, 2023

Analytical Method: TM.0812

Methyl Mercury (MeHg) - Analytical Results

NUD12Augu2 200JUNUOccore 0:.0200Unitera MayOutsomOutsomAugu2NUD12Augu2 2000101010101020010100101001010010100PD2.111Augu2 20001010NuCoccore 0:.0200Unitera May0.0004.00004.0000DE1.11Augu2 7.20030100NuCoccore 0:.0200Unitera May0.0004.00004.0000DE1.71Augu1 7.20030100NuCoccore 0:.0200Unitera May0.0000.00200.0021DE1.72Augu1 7.20030100NuCoccore 0:.0200Unitera May0.0000.00200.0021OWT64Augu1 7.20031010NuCoccore 0:.0200Unitera May0.0000.00210.0021MM442Augu1 7.20031010NuCoccore 0:.0200Unitera May0.00100.00100.0021Augu1 7.20031010NuCoccore 0:.0200Unitera May0.00100.00170.0021Augu1 7.20031010NuCoccore 0:.0200Unitera May0.00100.00170.0017Augu1 7.20031010NuCoccore 0:.0200Unitera May0.00100.00170.0017Augu1 7.20031010NuCoccore 0:.0200Unitera May0.00100.00170.0017Augu1 7.20031010NuCoccore 0:.0200Unitera May0.00100.00170.0017Augu1 7.20031010NuCoccore 0:.0200Unitera May <t< th=""><th>Sample ID</th><th>Date Collected</th><th>Lab ID #</th><th>Prep Code</th><th>Analysis Period</th><th>Parameter Code</th><th>Sample Vol (L)</th><th>Total MeHg (ng)</th><th>Final Concentration (ng/L)</th></t<>	Sample ID	Date Collected	Lab ID #	Prep Code	Analysis Period	Parameter Code	Sample Vol (L)	Total MeHg (ng)	Final Concentration (ng/L)
NUC-153 Appat 22, 2023 7.0 Oxder 06 - 06, 2023 Unitered Mary 0.8.64 0.40080 0.40000 PDL-118 August 22, 2023 4.0 min Oxder 05 - 66, 2023 Unitered Mary 0.8.040 -0.0050 -0.4005 0.4000 DS1-71 August 7, 2023 5.0 min Oxder 05 - 66, 2023 Unitered Mary 0.0400 0.0023 0.057 DS1-71 August 17, 2023 0.0 min<	INUG-152	August 22, 2023	1U	n/a	October 05 - 06, 2023	Unfiltered MeHg	0.040	<0.0005	<mdl< td=""></mdl<>
PDL.117 A.gant 2.2023 30.0 one October 65-08.2023 Unitered Methy 0.0400 4-0.0861 -4400. DS1-11 A.gant 7.2023 0.0 onia October 65-08.2023 Unitered Methy 0.040 0.0001 -400.0 DS1-72 A.gant 7.2023 0.0 onia October 65-08.2023 Unitered Methy 0.040 0.0215 0.0303 DWT8-14 A.gant 14.2023 0.0 onia October 65-08.2023 Unitered Methy 0.040 0.0254 0.0504 MW8-14 A.agant 15.2023 0.01 onia October 65-08.2023 Unitered Methy 0.040 0.0257 -4400.0 MA4641 A.agant 15.2023 10.0 onia October 65-08.2023 Unitered Methy 0.040 0.0037 -4400.0 A.B65 A.agant 18.2023 13.0 onia October 65-08.2023 Unitered Methy 0.040 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034	INUG-153	August 22, 2023	2U	n/a	October 05 - 06, 2023	Unfiltered MeHg	0.040	<0.0005	<mdl< td=""></mdl<>
PDL-116 A-Agent 7.2023 4-U r/n Dockser 65-06.2033 Unfitend Mary B-B46 -0-B058 -0-B058 DS1-72 A-Agent 7.2023 6-U r/n October 65-06.2033 Unfitend Mary 0.640 0.0023 0.657 WTB-31 A-Agent 7.2023 7.U r/n October 65-06.2033 Unfitend Mary 0.640 0.0255 0.584 WTB-31 A-Agent 7.2023 9.U r/n October 65-06.2033 Unfitend Mary 0.640 0.0255 0.584 MMA-31 A-Agent 7.2023 9.U r/n October 65-06.2033 Unfitend Mary 0.640 0.0133 0.331 AM6-5 A-Agent 7.2023 11U r/n October 65-06.2033 Unfitend Mary 0.640 0.0057 0.640 0.0057 0.640 0.0057 0.640 0.0057 0.640 0.0057 0.640 0.0057 0.640 0.0057 0.640 0.0057 0.640 0.0057 0.640 0.0057 0.640 0.0057 0.640 0.0057 0.640 <t< td=""><td>PDL-117</td><td>August 22, 2023</td><td>ЗU</td><td>n/a</td><td>October 05 - 06, 2023</td><td>Unfiltered MeHg</td><td>0.040</td><td><0.0005</td><td><mdl< td=""></mdl<></td></t<>	PDL-117	August 22, 2023	ЗU	n/a	October 05 - 06, 2023	Unfiltered MeHg	0.040	<0.0005	<mdl< td=""></mdl<>
DS1-71 August 17,2033 FU n/a Onder 6:06,2033 Unitered Merig 0.040 0.0000 -4484. DS1-72 August 12,2033 FU n/a Ocdater 6:06,2033 Unitered Merig 0.040 0.0215 0.053 WTS-82 August 14,2033 8U n/a Ocdater 6:06,2033 Unitered Merig 0.040 0.0225 0.056 MMA451 August 15,2033 1U n/a Ocdater 6:06,2023 Unitered Merig 0.040 0.0007 -4484 Ads:5 August 20,203 1U n/a Ocdater 6:06,2023 Unitered Merig 0.040 0.0131 0.0331 Ads:5 August 20,203 1U n/a Ocdater 6:06,2023 Unitered Merig 0.040 0.0004 0.0205 0.0331 Ads:6 August 10,2033 1U n/a Ocdater 6:06,2023 Unitered Merig 0.040 0.0005 0.016 Ads:7 August 10,2033 1U n/a Ocdater 6:06,2033 Unitered Merig 0.0400 0.0005 0.0205 <	PDL-118	August 22, 2023	4U	n/a	October 05 - 06, 2023	Unfiltered MeHg	0.040	<0.0005	<mdl< td=""></mdl<>
DS1-72 August 17, 2023 FU nu Occleve 05:00,203 Unifiered Merig 0.0.00 0.0.033 0.0.07 WTS-81 August 14, 2023 FU nu Occleve 05:00,203 Unifiered Merig 0.0.40 0.0.25 0.533 MMAE1 August 15, 2023 FU nu Occleve 05:00,203 Unifiered Merig 0.0.40 0.0027 0.664 MMAE1 August 12, 2023 1010 nu Occleve 05:00,203 Unifiered Merig 0.040 0.0133 0.0331 A655 August 12, 2023 1100 nu Occleve 05:00,203 Unifiered Merig 0.040 0.0097 0.116 A20-76 August 18, 2023 1100 nu Occleve 05:00,203 Unifiered Merig 0.040 0.0097 0.116 A20-76 August 18, 2023 1100 nu Occleve 05:00,203 Unifiered Merig 0.040 0.0095 0.0292 0.129 A1G-OUP-1 August 18, 2023 1190 nu Occleve 05:00,203 Unifiered Merig 0.040 0.0095	DS1-71	August 17, 2023	5U	n/a	October 05 - 06, 2023	Unfiltered MeHg	0.040	0.0008	<mrl< td=""></mrl<>
WTS-11 August 14, 2023 7U ma Onderer 05:e0.2023 Utifiered Merig 0.040 0.0215 0.058 MMM-11 August 15, 2023 0U ma October 05:e0.2023 Utifiered Merig 0.040 0.0225 0.056 MMM-82 August 15, 2023 10U ma October 05:e0.203 Utifiered Merig 0.040 0.0027 -4.884 AK65 August 20, 2023 11U ma October 05:e0.203 Utifiered Merig 0.040 0.0034 0.0235 AK57 August 10, 2023 12U ma October 05:e0.203 Utifiered Merig 0.040 0.0097 -0.898 AK57 August 10, 2023 14U ma October 05:e0.203 Utifiered Merig 0.040 0.0097 -0.898 AUG-DUP-1 August 10, 2023 14U ma October 05:e0.203 Utifiered Merig 0.040 -0.805 -0.203 AUG-DUP-1 August 20, 203 19U ma October 05:e0.203 Utifiered Merig 0.040 -0.805 -0.205	DS1-72	August 17, 2023	6U	n/a	October 05 - 06, 2023	Unfiltered MeHg	0.040	0.0023	0.057
WTS-42 August 15, 2023 BU man Onderer 05:e0.2023 Unifiered Merig 0.0.40 0.0225 0.0.66 MAM.42 August 15, 2023 10U man Oxderer 05:e0.2023 Unifiered Merig 0.040 0.0021 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0033 0.0033 0.0333 0.0331 0.0331 0.0331 0.0331 0.0331 0.0334 0.0254 0.0404 0.0404 0.0294	WTS-81	August 14, 2023	7U	n/a	October 05 - 06, 2023	Unfiltered MeHg	0.040	0.0215	0.538
MMA61 August 15, 2023 PU n/n October 05 - 06, 2023 Unfiltered Medg 0.040 0.0007 -0.460 MAM.82 August 20, 2023 110 n/n October 05 - 06, 2023 Unfiltered Medg 0.040 0.0013 0.331 A65-6 August 20, 2023 120 n/n October 05 - 06, 2023 Unfiltered Medg 0.040 0.0094 0.0235 A65-76 August 18, 2023 130 n/n October 05 - 06, 2023 Unfiltered Medg 0.040 0.0094 0.028 0.089 A02-75 August 18, 2023 140 n/n October 05 - 06, 2023 Unfiltered Medg 0.040 0.0092 0.089 AUG-0UP-1 August 18, 2023 140 n/n October 05 - 06, 2023 Unfiltered Medg 0.040 0.0002 0.089 AUG-0UP-2 August 20, 2023 170 n/n October 05 - 06, 2023 Unfiltered Medg 0.040 40,0005 44001 NUG-152 August 2, 2023 170 n/n October 05 - 06, 2023 Filtered Medg 0.040	WTS-82	August 14, 2023	8U	n/a	October 05 - 06, 2023	Unfiltered MeHg	0.040	0.0225	0.564
MAM-92 August 15, 2023 100 n'a October 05-06, 2023 Unfineed Melty 0.040 0.0007 -MBRL A65-5 August 20, 2023 110 n'a October 05-06, 2023 Unfineed Melty 0.040 0.033 0.331 A65-6 August 18, 2023 130 n'a October 05-06, 2023 Unfineed Melty 0.040 0.034 0.0394 0.235 A20-75 August 18, 2023 140 n'a October 05-06, 2023 Unfineed Melty 0.040 0.036 0.0394 0.0394 AUG-DUP-2 August 18, 2023 150 n'a October 05-06, 2023 Unfineed Melty 0.040 40,005 40,005 40,005 AUG-DUP-2 August 12, 2023 150 n'a October 05-06, 2023 Unfineed Melty 0.040 40,005 40,005 40,005 AUG-DUF-3 August 22, 2023 157 fmach October 05-06, 2023 Filtered Melty 0.040 40,005 40,005 40,005 NUG-153 August 22, 2023 157 fmach	MAM-81	August 15, 2023	9U	n/a	October 05 - 06, 2023	Unfiltered MeHg	0.040	0.0020	0.050
A65-5 Auguit 20, 202 11U rná October 65-06, 2023 Unfinered Meleg 0.040 0.0133 0.331 A65-6 Auguit 10, 2023 13U rná October 65-06, 2023 Unfinered Meleg 0.040 0.0404 0.235 A62-75 Auguit 10, 2023 13U rná October 65-06, 2023 Unfinered Meleg 0.040 0.057 0.057 AUG-0LP-1 Auguit 10, 2023 14U rná October 65-06, 2023 Unfinered Meleg 0.040 0.052 0.058 AUG-0LP-1 Auguit 12, 2023 14U rná October 65-06, 2023 Unfinered Meleg 0.040 4.0005 4.0005 AUG-1F3 Auguit 20, 2023 14U rná October 65-06, 2023 Unfinered Meleg 0.040 4.0005 4.0014 NING-153 Auguit 20, 2023 14F ffittor October 65-06, 2023 Fittered Meleg 0.040 4.0005 4.0014 NING-153 Auguit 20, 2023 3F ffittor October 65-06, 2023 Fittered Meleg 0.040 4.0005	MAM-82	August 15, 2023	10U	n/a	October 05 - 06, 2023	Unfiltered MeHg	0.040	0.0007	<mrl< td=""></mrl<>
A85-6 August 20, 203 12U n/a October 65-06, 2023 Unifiered MeHg 0.040 0.0094 0.235 A20-75 August 18, 2023 14U n/a October 65-06, 2023 Unifiered MeHg 0.040 0.0097 0.116 A02-75 August 15, 2023 15U n/a October 65-06, 2023 Unifiered MeHg 0.040 0.0052 0.129 AUG-DUP-2 August 15, 2023 15U n/a October 65-06, 2023 Unifiered MeHg 0.040 0.0052 0.129 AUG-DUP-2 August 20, 2023 17U n/a October 65-06, 2023 Unifiered MeHg 0.040 -0.0052 -0.400L AUG-TIS August 20, 2023 17U n/a October 65-06, 2023 Unifiered MeHg 0.040 -0.0055 -4MDL INUG-152 August 22, 2023 1F fiftmation October 65-06, 2023 Filtered MeHg 0.040 -0.0055 -4MDL PDL-118 August 22, 2023 4F fiftmation October 65-06, 2023 Filtered MeHg 0.040 -0.0055 <td>A65-5</td> <td>August 20, 2023</td> <td>11U</td> <td>n/a</td> <td>October 05 - 06, 2023</td> <td>Unfiltered MeHg</td> <td>0.040</td> <td>0.0133</td> <td>0.331</td>	A65-5	August 20, 2023	11U	n/a	October 05 - 06, 2023	Unfiltered MeHg	0.040	0.0133	0.331
A80-75 August 18, 2023 13U n'a October 65 - 06, 2023 Unfiltered MeHg 0.040 0.0047 0.116 A20-76 August 18, 2023 14U n'a October 65 - 06, 2023 Unfiltered MeHg 0.040 0.0056 0.0098 AUG-0LP-1 August 18, 2023 16U n'a October 65 - 06, 2023 Unfiltered MeHg 0.040 0.0052 0.129 DHBank August 20, 2023 17U n'a October 65 - 06, 2023 Unfiltered MeHg 0.040 40.0052 400012 INUG-152 August 20, 2023 18U n'a October 65 - 06, 2023 Unfiltered MeHg 0.040 40.0055 4MDL INUG-152 August 22, 2023 18U filtration October 65 - 06, 2023 Filtered MeHg 0.040 40.0055 4MDL PDL-117 August 22, 2023 3F filtration October 65 - 06, 2023 Filtered MeHg 0.040 40.0055 4MDL DS1-72 August 12, 2023 3F filtration October 65 - 06, 2023 Filtered MeHg 0.040 <td>A65-6</td> <td>August 20, 2023</td> <td>12U</td> <td>n/a</td> <td>October 05 - 06, 2023</td> <td>Unfiltered MeHg</td> <td>0.040</td> <td>0.0094</td> <td>0.235</td>	A65-6	August 20, 2023	12U	n/a	October 05 - 06, 2023	Unfiltered MeHg	0.040	0.0094	0.235
A80-76 August 18, 2023 14U n'a October 05 - 06, 2023 Unfiltered MeHg 0.040 0.0336 0.089 AUG-DUP-1 August 15, 2023 15U n'a October 05 - 06, 2023 Unfiltered MeHg 0.040 400055 440L AUG-DUP-2 August 12, 2023 17U n'a October 05 - 06, 2023 Unfiltered MeHg 0.040 400055 440L AUG-DUP-2 August 20, 2023 17U n'a October 05 - 06, 2023 Unfiltered MeHg 0.040 400055 440L AUG-TB August 20, 2023 17E filtration October 05 - 06, 2023 Filtered MeHg 0.040 400055 440L INUG-152 August 22, 2023 3F filtration October 05 - 06, 2023 Filtered MeHg 0.040 400055 440L PDL-117 August 12, 2023 3F filtration October 05 - 06, 2023 Filtered MeHg 0.040 400055 440L DS1-72 August 17, 2023 6F filtration October 05 - 06, 2023 Filtered MeHg 0.040 <td>A20-75</td> <td>August 18, 2023</td> <td>13U</td> <td>n/a</td> <td>October 05 - 06, 2023</td> <td>Unfiltered MeHg</td> <td>0.040</td> <td>0.0047</td> <td>0.116</td>	A20-75	August 18, 2023	13U	n/a	October 05 - 06, 2023	Unfiltered MeHg	0.040	0.0047	0.116
AUG-DUP-1 August 15, 2023 15U r/n October 65 - 66, 2023 Unifiteerd MeHg 0.040 40.0005 4MDL AUG-DUP-2 August 18, 2023 11U r/n October 65 - 66, 2023 Unifiteerd MeHg 0.040 0.052 0.129 DI-Blark August 20, 2023 11U r/n October 65 - 66, 2023 Unifiteerd MeHg 0.040 40.0005 4MDL AUG-TB August 22, 2023 1FF filtration October 65 - 66, 2023 Unifiteerd MeHg 0.040 40.0005 4MDL INUG-152 August 22, 2023 1FF filtration October 65 - 66, 2023 Filtered MeHg 0.040 40.0005 4MDL PDL-117 August 22, 2023 3FF filtration October 65 - 66, 2023 Filtered MeHg 0.040 40.0005 4MDL DS1-71 August 17, 2023 3FF filtration October 65 - 66, 2023 Filtered MeHg 0.040 40.0005 4MDL DS1-71 August 14, 2023 3FF filtration October 65 - 66, 2023 Filtered MeHg	A20-76	August 18, 2023	14U	n/a	October 05 - 06, 2023	Unfiltered MeHg	0.040	0.0036	0.089
AUG-DUP-2 August 18, 2023 16U n'a October 56, 2023 Unfiltered Meltg 0.040 0.0052 0.129 DI-Blank August 20, 2023 17U n'a October 56, 2023 Unfiltered Meltg 0.040 <0.0050	AUG-DUP-1	August 15, 2023	15U	n/a	October 05 - 06, 2023	Unfiltered MeHg	0.040	<0.0005	<mdl< td=""></mdl<>
Di-Blank August 20, 2023 17U n'a October 65-06, 2023 Unfittered MeHg 0.040 <0.0005 <mol< th=""> AUG-TB August 20, 2023 18U n'a October 65-06, 2023 Unfittered MeHg 0.040 <0.0005</mol<>	AUG-DUP-2	August 18, 2023	16U	n/a	October 05 - 06, 2023	Unfiltered MeHg	0.040	0.0052	0.129
AlgG-TB August 20, 2023 18U n'a October 65 - 06, 2023 Unifiered MeHg 0.040 <0.0050 <mdl< th=""> INUG-152 August 22, 2023 1F filtration October 05 - 06, 2023 Filtered MeHg 0.040 <0.0050</mdl<>	DI-Blank	August 20, 2023	17U	n/a	October 05 - 06, 2023	Unfiltered MeHg	0.040	<0.0005	<mdl< td=""></mdl<>
INUG-152August 22,203IFIfitrationOctober 06,0203Filtered MeHg0.040<0.0005 <mdl< th="">PDL-117August 22,2033FIfitrationOctober 06,0203Filtered MeHg0.0400<0.0005</mdl<>	AUG-TB	August 20, 2023	18U	n/a	October 05 - 06, 2023	Unfiltered MeHg	0.040	<0.0005	<mdl< td=""></mdl<>
INUG-153 August 22, 2023 2F filtration October 65 - 66, 2023 Filtered MeHg 0.040 <0.0005 <mdl< th=""> PDL-117 August 22, 2023 3F filtration October 65 - 66, 2023 Filtered MeHg 0.040 <0.0005</mdl<>	INUG-152	August 22, 2023	1F	filtration	October 05 - 06, 2023	Filtered MeHg	0.040	<0.0005	<mdl< td=""></mdl<>
PDL-117 August 22, 2023 3F filtration October 05-06, 2023 Filtered MeHg 0.040 <0.0005 <mdl< th=""> PDL-118 August 22, 2023 4F filtration October 05-06, 2023 Filtered MeHg 0.040 <0.0005</mdl<>	INUG-153	August 22, 2023	2F	filtration	October 05 - 06, 2023	Filtered MeHg	0.040	<0.0005	<mdl< td=""></mdl<>
PDL-118 August 22, 2023 4F filtration October 05 - 06, 2023 Filtered MeHg 0.040 <0.0005 <mdl< th=""> DS1-71 August 17, 2023 5F filtration October 05 - 06, 2023 Filtered MeHg 0.040 <0.0005</mdl<>	PDL-117	August 22, 2023	3F	filtration	October 05 - 06, 2023	Filtered MeHg	0.040	<0.0005	<mdl< td=""></mdl<>
DS1-71 August 17, 2023 SF filtration October 05-06, 2023 Filtered MeHg 0.040 <0.0005 <mdl< th=""> DS1-72 August 17, 2023 0F filtration October 05-06, 2023 Filtered MeHg 0.040 <0.0005</mdl<>	PDL-118	August 22, 2023	4F	filtration	October 05 - 06, 2023	Filtered MeHg	0.040	<0.0005	<mdl< td=""></mdl<>
DS1-72 August 17, 2023 6F filtration October 05-06, 2023 Filtered MeHg 0.040 <0.0005 <4MDL WTS-81 August 14, 2023 7F filtration October 05-06, 2023 Filtered MeHg 0.040 0.0044 0.110 WTS-82 August 14, 2023 8F filtration October 05-06, 2023 Filtered MeHg 0.040 0.0042 0.106 MAM-81 August 15, 2023 9F filtration October 05-06, 2023 Filtered MeHg 0.040 <0.0005	DS1-71	August 17, 2023	5F	filtration	October 05 - 06, 2023	Filtered MeHg	0.040	<0.0005	<mdl< td=""></mdl<>
WTS-81 August 14, 2023 7F filtration October 05-06, 2023 Filtered MeHg 0.040 0.0044 0.110 WTS-82 August 14, 2023 8F filtration October 05-06, 2023 Filtered MeHg 0.040 0.0042 0.106 MAM-81 August 15, 2023 9F filtration October 05-06, 2023 Filtered MeHg 0.040 <0.005	DS1-72	August 17, 2023	6F	filtration	October 05 - 06, 2023	Filtered MeHg	0.040	<0.0005	<mdl< td=""></mdl<>
WTS-82 August 14, 2023 8F filtration October 05-06, 2023 Filtered MeHg 0.040 0.0042 0.106 MAM-81 August 15, 2023 9F filtration October 05-06, 2023 Filtered MeHg 0.040 <0.0005	WTS-81	August 14, 2023	7F	filtration	October 05 - 06, 2023	Filtered MeHg	0.040	0.0044	0.110
MAM-81 August 15, 2023 9F filtration October 05-06, 2023 Filtered MeHg 0.040 <0.0005 <mdl< th=""> MAM-82 August 15, 2023 10F filtration October 05-06, 2023 Filtered MeHg 0.040 <0.0005</mdl<>	WTS-82	August 14, 2023	8F	filtration	October 05 - 06, 2023	Filtered MeHg	0.040	0.0042	0.106
MAM-82 August 15, 2023 10F filtration October 05 - 06, 2023 Filtered MeHg 0.040 <0.0005 <mdl< th=""> A65-5 August 20, 2023 11F filtration October 05 - 06, 2023 Filtered MeHg 0.040 0.0033 0.084 A65-6 August 20, 2023 12F filtration October 05 - 06, 2023 Filtered MeHg 0.040 0.0027 0.067 A62-6 August 18, 2023 13F filtration October 05 - 06, 2023 Filtered MeHg 0.040 0.0027 0.067 A20-75 August 18, 2023 13F filtration October 05 - 06, 2023 Filtered MeHg 0.040 0.0020 0.049 A20-76 August 18, 2023 14F filtration October 05 - 06, 2023 Filtered MeHg 0.040 0.0008 <mrl< td=""> AUG-DUP-1 August 18, 2023 14F filtration October 05 - 06, 2023 Filtered MeHg 0.040 <0.0009</mrl<></mdl<>	MAM-81	August 15, 2023	9F	filtration	October 05 - 06, 2023	Filtered MeHg	0.040	<0.0005	<mdl< td=""></mdl<>
A65-5 August 20, 2023 11F filtration October 05-06, 2023 Filtered MeHg 0.040 0.033 0.084 A65-6 August 20, 2023 12F filtration October 05-06, 2023 Filtered MeHg 0.040 0.0037 0.067 A20-75 August 18, 2023 13F filtration October 05-06, 2023 Filtered MeHg 0.040 0.0027 0.067 A20-75 August 18, 2023 13F filtration October 05-06, 2023 Filtered MeHg 0.040 0.0020 0.049 A20-76 August 18, 2023 14F filtration October 05-06, 2023 Filtered MeHg 0.040 0.0008 <mrl< td=""> AUG-DUP-1 August 18, 2023 14F filtration October 05-06, 2023 Filtered MeHg 0.040 <0.0008</mrl<>	MAM-82	August 15, 2023	10F	filtration	October 05 - 06, 2023	Filtered MeHg	0.040	<0.0005	<mdl< td=""></mdl<>
A65-6 August 20, 2023 12F filtration October 05-06, 2023 Filtered MeHg 0.040 0.0027 0.067 A20-75 August 18, 2023 13F filtration October 05-06, 2023 Filtered MeHg 0.040 0.0027 0.067 A20-75 August 18, 2023 13F filtration October 05-06, 2023 Filtered MeHg 0.040 0.0020 0.049 A20-76 August 18, 2023 14F filtration October 05-06, 2023 Filtered MeHg 0.040 0.0008 < <ktr> AUG-DUP-1 August 15, 2023 15F filtration October 05-06, 2023 Filtered MeHg 0.040 <0.0009</ktr>	A65-5	August 20, 2023	11F	filtration	October 05 - 06, 2023	Filtered MeHg	0.040	0.0033	0.084
A20-75 August 18, 2023 13F filtration October 05-06, 2023 Filtered MeHg 0.040 0.0020 0.049 A20-75 August 18, 2023 14F filtration October 05-06, 2023 Filtered MeHg 0.040 0.0020 0.049 A20-76 August 18, 2023 14F filtration October 05-06, 2023 Filtered MeHg 0.040 0.0005 <mdl< td=""> AUG-DUP-1 August 15, 2023 15F filtration October 05-06, 2023 Filtered MeHg 0.040 <0.0005</mdl<>	A65-6	August 20, 2023	12F	filtration	October 05 - 06, 2023	Filtered MeHg	0.040	0.0027	0.067
A20-76 August 18, 2023 14F filtration October 05-06, 2023 Filtered MeHg 0.040 0.0008 < <hk>MRL AUG-DUP-1 August 15, 2023 15F filtration October 05-06, 2023 Filtered MeHg 0.0400 <<0.0008</hk>	A20-75	August 18, 2023	13F	filtration	October 05 - 06, 2023	Filtered MeHg	0.040	0.0020	0.049
AUG-DUP-1 August 15, 2023 15F filtration October 05-06, 2023 Filtered MeHg 0.040 <0.0005 <dmdl< th=""> AUG-DUP-2 August 18, 2023 16F filtration October 05-06, 2023 Filtered MeHg 0.0400 0.0009 <dmdl< td=""> Di-Blank August 20, 2023 17F filtration October 05-06, 2023 Filtered MeHg 0.0400 <d.0005< td=""> <dmdl< td=""> AUG-TB August 20, 2023 17F filtration October 05-06, 2023 Filtered MeHg 0.0400 <d.0005< td=""> <dmdl< td=""> MUG-TB August 20, 2023 18F filtration October 05-06, 2023 Filtered MeHg 0.0400 <d.0005< td=""> <dmdl< td=""> MUG-TB August 20, 2023 18F filtration October 05-06, 2023 Filtered MeHg 0.0400 <d.0005< td=""> <d.0005< td=""> MDL(ng) MUG-TB August 20, 2023 18F filtration October 05-06, 2023 Filtered MeHg 0.0400 <d.0005< td=""> <d.0005< td=""></d.0005<></d.0005<></d.0005<></d.0005<></dmdl<></d.0005<></dmdl<></d.0005<></dmdl<></d.0005<></dmdl<></dmdl<>	A20-76	August 18, 2023	14F	filtration	October 05 - 06, 2023	Filtered MeHg	0.040	0.0008	<mrl< td=""></mrl<>
AUG-DUP-2 August 18, 2023 16F filtration October 05 - 06, 2023 Filtered MeHg 0.040 0.0009 < <mrl< th=""> Di-Blank August 20, 2023 17F filtration October 05 - 06, 2023 Filtered MeHg 0.040 <<0.0005</mrl<>	AUG-DUP-1	August 15, 2023	15F	filtration	October 05 - 06, 2023	Filtered MeHg	0.040	<0.0005	<mdl< td=""></mdl<>
Di-Blank August 20, 2023 17F filtration October 05 - 06, 2023 Filtered MeHg 0.040 <0.0005 < <mdl< th=""> AUG-TB August 20, 2023 18F filtration October 05 - 06, 2023 Filtered MeHg 0.040 <0.0005</mdl<>	AUG-DUP-2	August 18, 2023	16F	filtration	October 05 - 06, 2023	Filtered MeHg	0.040	0.0009	<mrl< td=""></mrl<>
AUG-TB August 20, 2023 18F filtration October 05 - 06, 2023 Filtered MeHg 0.040 <0.0005 <mdl< th=""> MDL (ng) Image: Comparison of the state of the sta</mdl<>	DI-Blank	August 20, 2023	17F	filtration	October 05 - 06, 2023	Filtered MeHg	0.040	<0.0005	<mdl< td=""></mdl<>
MDL(ng) Image: Constraint of the second	AUG-TB	August 20, 2023	18F	filtration	October 05 - 06, 2023	Filtered MeHg	0.040	<0.0005	<mdl< td=""></mdl<>
MR(ng) 6 6 00014	MDL (ng)							0.0005	
	MRL (ng)							0.0014	

NA: Not applicable

Comments: Samples Values <MRL are solely left to the discretion of the client. MeHg higher than THg acceptability is less than 35% of Relative Percent Difference.

Legend: MRL (Method Reporting Limit) MDL (Method Detection Limit)

APPENDIX A2 SURFACE WATER MERCURY DATABASE

Year	Date	Workorder	Collector	Site	Lake	Parameter	Units	Replicate	Sample Depth	Result	Detection Limit
2016	17-Aug-16	L1817642	Azimuth	WTS-12	Whale Tail	Total Hg Unfiltered	ng/L	А	Surface	<0.50	0.5
2016	17-Aug-16	L1817642	Azimuth	WTS-12	Whale Tail	Total Hg Filtered	ng/L	A	Surface	<0.50	0.5
2016	17-Aug-16	L1817642	Azimuth	WTS-12	Whale Tail	MeHg Unfiltered	ng/L	A	Surface	<0.050	0.05
2016	17-Aug-16	L1817642	Azimuth	WTS-12	Whale Tail	MeHg Filtered	ng/L	A	Surface	<0.050	0.05
2017	28-Aug-17	L1985255	Azimuth	WTS-23	Whale Tail	Total Hg Unfiltered	ng/L	A	Surface	0.52	0.5
2017	28-Aug-17	L1985255	Azimuth	WTS-23	Whale Tail	Total Hg Filtered	ng/L	A	Surface	<0.50	0.5
2017	28-Aug-17	L1985255	Azimuth	WTS-23	Whale Tail	MeHg Unfiltered	ng/L	A	Surface	<0.050	0.05
2017	28-Aug-17	L1985255	Azimuth	WTS-23	Whale Tail	MeHg Filtered	ng/L	A	Surface	<0.050	0.05
2017	28-Aug-17	L1985255	Azimuth	MAM-23	Mammoth	Total Hg Unfiltered	ng/L	A	Surface	<0.50	0.5
2017	28-Aug-17	L1985255	Azimuth	MAM-23	Mammoth	Total Hg Filtered	ng/L	A	Surface	<0.50	0.5
2017	28-Aug-17	L1985255	Azimuth	MAM-23	Mammoth	MeHg Unfiltered	ng/L	A	Surface	<0.050	0.05
2017	28-Aug-17	L1985255	Azimuth	MAM-23	Mammoth	MeHg Filtered	ng/L	A	Surface	<0.050	0.05
2017	14-Aug-17	L1981162	Azimuth	WTS-23	Whale Tail	Total Hg Unfiltered	ng/L	A	Surface	0.5	0.5
2017	14-Aug-17	L1981162	Azimuth	W1S-23	Whale Tail	Total Hg Filtered	ng/L	A	Surface	<0.50	0.5
2017	14-Aug-17	L1981162	Azimuth	WTS-23	Whale Tail	MeHg Unfiltered	ng/L	A	Surface	<0.050	0.05
2017	14-Aug-17	L1981162	Azimuth	WTS-23	Whale Tail	MeHg Filtered	ng/L	A	Surface	<0.050	0.05
2018	16-Aug-18	W02019-02-008	Uow	WIL-WQ01	Whale Tail	Total Hg Unfiltered	ng/L	A	Surface	0.287	0.2
2018	16-Aug-18	W02019-02-008	Uow	WIL-WQ01	whale fail	Total Hg Filtered	ng/L	A	Surface	0.321	0.2
2018	16-Aug-18	WO2019-02-008	Uow	WTL-WQ02	Whale Tail	Total Hg Unflitered	ng/L	A	Surface	0.284	0.2
2018	16-Aug-18	WO2019-02-008	Uow	WIL-WQ02	Whate Fall	Total Hg Filtered	ng/L	A	Surface	0.246	0.2
2018	16-Aug-18	WO2019-02-008	UOW	MINIT-WQ01	Mammoth	Total Hg Onlitered	ng/L	A	Surface	0.337	0.2
2018	16-Aug-18	W02019-02-008	Uow	MMT-WQU1	Mammoth	Total Hg Filtered	ng/L	A	Surface	0.428	0.2
2018	16-Aug-18	W02019-02-008	Uow	MMT-WQ02	Mammoth	Total Hg Unfiltered	ng/L	A	Surface	<0.2	0.2
2018	15-Aug-18	WO2019-02-008	Uow	MM1-WQ02	Nammoth	Total Hg Filtered	ng/L	A	Surface	0.289	0.2
2018	17-Aug-18	W02019-02-008	Uow	NEM-WQ01	Nemo	Total Hg Unflitered	ng/L	A	Surface	0.419	0.2
2018	17-Aug-18	WO2019-02-008	UOW		Nemo	Total Hg Unfiltered	ng/L	A A	Surface	0.005	0.2
2018	17-Aug-18	WO2019-02-008			Nemo	Total Hg Filterod	ng/L	A A	Surface	U.352	0.2
2018	17 Aug-18	WO2019-02-008			420		ng/L	A A	Surface	NU.2	0.2
2018	17-Aug-18	WO2019-02-008		A20-WQU1	A20		ng/L	A A	Surface	U.498	0.2
2018	17-Aug-18	W02019-02-000	LIOW/	A20-WQU1 A20-W/002	A20	Total Hg Unfiltered	ng/L	Δ	Surface	<u>_</u> 0.2 ∩ 4∩7	0.2
2018	17-Aug-18	WO2019-02-008	UoW	A20-W002	A20	Total Hg Filtered	ng/L	A	Surface	<0.2	0.2
2018	18-Aug-18	WO2019-02-008	UoW	A76-WQ01	A76	Total Hg Unfiltered	ng/L	A	Surface	<0.2	0.2
2018	18-Aug-18	WO2019-02-008	UoW	A76-WQ01	A76	Total Hg Filtered	ng/L	А	Surface	<0.2	0.2
2018	18-Aug-18	WO2019-02-008	UoW	A76-WQ02	A76	Total Hg Unfiltered	ng/L	А	Surface	<0.2	0.2
2018	18-Aug-18	WO2019-02-008	UoW	A76-WQ02	A76	Total Hg Filtered	ng/L	А	Surface	<0.2	0.2
2018	18-Aug-18	WO2019-02-008	UoW	A76-WQ02	A76	Total Hg Unfiltered	ng/L	В	Surface	0.381	0.2
2018	18-Aug-18	WO2019-02-008	UoW	A76-WQ02	A76	Total Hg Filtered	ng/L	В	Surface	<0.2	0.2
2018	20-Aug-18	WO2019-02-008	UoW	A63-WQ01	A63	Total Hg Unfiltered	ng/L	А	Surface	0.319	0.2
2018	20-Aug-18	WO2019-02-008	UoW	A63-WQ01	A63	Total Hg Filtered	ng/L	А	Surface	0.272	0.2
2018	20-Aug-18	WO2019-02-008	UoW	A63-WQ01	A63	Total Hg Unfiltered	ng/L	В	Surface	0.325	0.2
2018	20-Aug-18	WO2019-02-008	UoW	A63-WQ01	A63	Total Hg Filtered	ng/L	В	Surface	0.306	0.2
2018	20-Aug-18	WO2019-02-008	UoW	A63-WQ02	A63	Total Hg Unfiltered	ng/L	А	Surface	0.385	0.2
2018	20-Aug-18	WO2019-02-008	UoW	A63-WQ02	A63	Total Hg Filtered	ng/L	А	Surface	0.3	0.2
2018	20-Aug-18	WO2019-02-008	UoW	A65-WQ01	A65	Total Hg Unfiltered	ng/L	А	Surface	0.364	0.2
2018	20-Aug-18	WO2019-02-008	UoW	A65-WQ01	A65	Total Hg Filtered	ng/L	А	Surface	0.265	0.2
2018	20-Aug-18	WO2019-02-008	UoW	A65-WQ02	A65	Total Hg Unfiltered	ng/L	А	Surface	0.361	0.2
2018	20-Aug-18	WO2019-02-008	UoW	A65-WQ02	A65	Total Hg Filtered	ng/L	А	Surface	0.241	0.2
2018	21-Aug-18	WO2019-02-008	UoW	LK8-WQ01	Lake 8	Total Hg Unfiltered	ng/L	A	Surface	<0.2	0.2
2018	21-Aug-18	WO2019-02-008	UoW	LK8-WQ01	Lake 8	Total Hg Filtered	ng/L	A	Surface	0.241	0.2
2018	21-Aug-18	WO2019-02-008	UoW	LK8-WQ02	Lake 8	Total Hg Unfiltered	ng/L	А	Surface	<0.2	0.2
2018	21-Aug-18	WO2019-02-008	UoW	LK8-WQ02	Lake 8	Total Hg Filtered	ng/L	A	Surface	0.322	0.2
2018	16-Aug-18	WO2019-02-008	UoW	WTL-WQ01	Whale Tail	MeHg Unfiltered	ng/L	А	Surface	<0.0225	0.0225
2018	16-Aug-18	WO2019-02-008	UoW	WTL-WQ01	Whale Tail	MeHg Filtered	ng/L	А	Surface	<0.0225	0.0225
2018	16-Aug-18	WO2019-02-008	UoW	WTL-WQ02	Whale Tail	MeHg Unfiltered	ng/L	А	Surface	<0.0225	0.0225
2018	16-Aug-18	WO2019-02-008	UoW	WTL-WQ02	Whale Tail	MeHg Filtered	ng/L	Α	Surface	<0.0225	0.0225
2018	16-Aug-18	WO2019-02-008	UoW	MMT-WQ01	Mammoth	MeHg Unfiltered	ng/L	А	Surface	<0.0225	0.0225
2018	16-Aug-18	WO2019-02-008	UoW	MMT-WQ01	Mammoth	MeHg Filtered	ng/L	Α	Surface	<0.0225	0.0225
2018	16-Aug-18	WO2019-02-008	UoW	MMT-WQ02	Mammoth	MeHg Unfiltered	ng/L	A	Surface	0.029	0.0225
2018	16-Aug-18	WO2019-02-008	UoW	MMT-WQ02	Mammoth	MeHg Filtered	ng/L	A	Surface	<0.0225	0.0225
2018	17-Aug-18	WO2019-02-008	UoW	NEM-WQ01	Nemo	MeHg Unfiltered	ng/L	A	Surface	<0.0225	0.0225
2018	17-Aug-18	WO2019-02-008	UoW	NEM-WQ01	Nemo	MeHg Filtered	ng/L	A	Surface	<0.0225	0.0225
2018	17-Aug-18	WO2019-02-008	UoW	NEM-WQ02	Nemo	MeHg Unfiltered	ng/L	A	Surface	<0.0225	0.0225
2018	17-Aug-18	WO2019-02-008	UoW	NEM-WQ02	Nemo	MeHg Filtered	ng/L	A	Surface	<0.0225	0.0225
2018	17-Aug-18	WO2019-02-008	UoW	A20-WQ01	A20	MeHg Unfiltered	ng/L	A	Surface	<0.0225	0.0225
2018	17-Aug-18	WO2019-02-008	UoW	A20-WQ01	A20	MeHg Filtered	ng/L	A	Surface	<0.0225	0.0225
2018	17-Aug-18	WO2019-02-008	UoW	A20-WQ02	A20	MeHg Unfiltered	ng/L	A	Surface	<0.0225	0.0225
2018	17-Aug-18	WO2019-02-008	UoW	A20-WQ02	A20	MeHg Filtered	ng/L	A	Surface	<0.0225	0.0225
2018	18-Aug-18	WO2019-02-008	UoW	A76-WQ01	A76	MeHg Unfiltered	ng/L	A	Surface	<0.0225	0.0225
2018	18-Aug-18	W02019-02-008	UoW	A76-WQ01	A/6	IVIEHg Filtered	ng/L	A	Surface	<0.0225	0.0225
2018	18-Aug-18	WO2019-02-008	UoW	A/6-WQ02	A76	Mella Filtered	ng/L	A .	Surface	<0.0225	0.0225
2018	10-Aug-18	WO2019-02-008	UOW	A/0-WQU2	A70	Molig Linflitered	ng/L	A	Surface	<0.0225	0.0225
2018	18-Aug-18	WO2019-02-008	UOW	A76-WQ02	A/0		ng/L	В	Surface	<0.0225	0.0225
2018	18-Aug-18	WO2019-02-008	UOW	A/b-WQ02	A/D		ng/L	в	Surface	<0.0225	0.0225
2018	20-Aug-18	WO2019-02-008	UOW	A03-WQ01	A62		ng/L	A	Surface	50.02	0.0225
2018	20-Aug-18	WO2019-02-008	UOW	A03-WQU1	463	MeHg Unfiltorod	ng/L	A	Surface	<0.0225	0.0225
2018	20-Aug-18	WO2019-02-008	UOW	A03-WQU1	A63	MeHa Filtarad	ng/L	B	Surface	<0.0225	0.0225
2010	20-Aug-18	W02019-02-000	LIGW	703-WQU1	A63	MeHg Infiltered	ng/L	۵ ۸	Surface	~U.U225	0.0223
2018	20-Aug-18	WO2019-02-008		A03-WQUZ	A63	MeHg Filtered	ng/L	A A	Surface	0.049 -0.0225	0.0225
2010	20-Aug-10	W02019-02-008	LIOW/	A65-W/001	A65	MeHg Unfiltered	nø/L	Δ	Surface	0.0223	0.0225
2010	20-Aug-10	W02019-02-008	10///	A65-W/001	A65	MeHg Filtered	ng/L	Δ	Surface	<0.027	0.0225
2018	20-Aug-18	WO2019-02-008	UnW	A65-W002	A65	MeHg Unfiltered	nø/l	Δ	Surface	0.035	0.0225
2018	20-Aug-18	WO2019-02-008	UoW	A65-W002	A65	MeHg Filtered	ng/l	A	Surface	<0.0225	0.0225
2018	21-Aug-18	WO2019-02-008	UnW	LK8-W001	Lake 8	MeHg Unfiltered	nø/i	A	Surface	<0.0225	0.0225
2018	21-Aug-18	WO2019-02-008	UoW	LK8-W001	Lake 8	MeHg Filtered	ng/L	A	Surface	<0.0225	0.0225
2018	21-Aug-18	WO2019-02-008	UoW	LK8-WQ02	Lake 8	- MeHg Unfiltered	ng/L	А	Surface	<0.0225	0.0225

Year	Date	Workorder	Collector	Site	Lake	Parameter	Units	Replicate	Sample Depth	Result	Detection Limit
2018	21-Aug-18	WO2019-02-008	UoW	LK8-WQ02	Lake 8	MeHg Filtered	ng/L	А	Surface	<0.0225	0.0225
2020	12-Aug-20	WO2020-09-009	UoW	A65-WQ01	A65	Total Hg Unfiltered	ng/L	А	Surface	2.745	0.172
2020	12-Aug-20	WO2020-09-008	UoW	A65-WQ01	A65	Total Hg Filtered	ng/L	A	Surface	1.096	0.172
2020	12-Aug-20	WO2020-09-008	UoW	A65-WQ02	A65	Total Hg Unfiltered	ng/L	А	Surface	2.541	0.172
2020	12-Aug-20	WO2020-09-008	UoW	A65-WQ02	A65	Total Hg Filtered	ng/L	А	Surface	2.853	0.172
2020	12-Aug-20	WO2020-09-008	UoW	WTL-WQ01	Whale Tail	Total Hg Unfiltered	ng/L	A	Surface	1.573	0.172
2020	12-Aug-20	WO2020-09-008	UoW	WTL-WQ01	Whale Tail	Total Hg Filtered	ng/L	A	Surface	1.95	0.172
2020	12-Aug-20	WO2020-09-008	UoW	WTL-WQ01	Whale Tail	Total Hg Unfiltered	ng/L	В	Surface	1.341	0.172
2020	12-Aug-20	WO2020-09-008	UoW	WTL-WQ01	Whale Tail	Total Hg Filtered	ng/L	В	Surface	1.221	0.172
2020	12-Aug-20	WO2020-09-008	UoW	WTL-WQ02	Whale Tail	Total Hg Unfiltered	ng/L	A	Surface	2.951	0.172
2020	12-Aug-20	WO2020-09-008	UoW	WTL-WQ02	Whale Tail	Total Hg Filtered	ng/L	A	Surface	1.382	0.172
2020	14-Aug-20	WO2020-09-008	UoW	A20-WQ01	A20	Total Hg Unfiltered	ng/L	A	Surface	1.066	0.172
2020	14-Aug-20	WO2020-09-008	UoW	A20-WQ01	A20	Total Hg Filtered	ng/L	A	Surface	1.382	0.172
2020	14-Aug-20	WO2020-09-008	UoW	A20-WQ01	A20	Total Hg Unfiltered	ng/L	В	Surface	2.395	0.172
2020	14-Aug-20	WO2020-09-008	UoW	A20-WQ01	A20	Total Hg Filtered	ng/L	В	Surface	1.803	0.172
2020	14-Aug-20	WO2020-09-008	UoW	A20-WQ02	A20	Total Hg Unfiltered	ng/L	A	Surface	2.003	0.172
2020	14-Aug-20	WO2020-09-008	UoW	A20-WQ02	A20	Total Hg Filtered	ng/L	A	Surface	1.561	0.172
2020	15-Aug-20	W02020-09-008	Uow	MMT-WQ01	Mammoth	Total Hg Unflitered	ng/L	A	Surface	1.447	0.172
2020	15-Aug-20	WO2020-09-008	UOW		Mammoth	Total Hg Linfiltered	ng/L	A	Surface	0.805	0.172
2020	15-Aug-20	WO2020-09-008	UoW		Mammoth	Total Hg Eiltorod	ng/L	A A	Surface	0.095	0.172
2020	15-Aug-20	WO2020-09-008		A76 WO01	Mannoun 476	Total Hg Unfiltered	ng/L	A 	Surface	0.909	0.172
2020	16 Aug 20	WO2020-09-008	UoW	A76-WQ01	A76	Total Hg Eiltorod	ng/L	A A	Surface	0.079	0.172
2020	16-Aug-20	WO2020-09-008	LIOW	A76-WQ01	476	Total Hg Unfiltered	ng/L	A	Surface	0.301	0.172
2020	16-Aug-20	WO2020-09-008	LIOW	A76-WQ02	476	Total Hg Filtered	ng/l	Δ	Surface	0.785	0.172
2020	17-Aug-20	WO2020-09-008	LloW	DS1-W001	DS1	Total Hg Unfiltered	ng/l	A	Surface	1.256	0.172
2020	17-Aug-20	WO2020-09-008	UoW	DS1-W001	DS1	Total Hg Filtered	ng/l	A	Surface	1.188	0.172
2020	17-Aug-20	WO2020-09-008	UoW	DS1-WQ02	DS1	Total Hg Unfiltered	ng/L	A	Surface	1.198	0.172
2020	17-Aug-20	WO2020-09-008	UoW	DS1-WQ02	DS1	Total Hg Filtered	ng/L	A	Surface	1.122	0.172
2020	21-Aug-20	WO2020-09-008	UoW	INUG-124	INUG	Total Hg Unfiltered	ng/L	А	Surface	0.579	0.172
2020	21-Aug-20	WO2020-09-008	UoW	INUG-124	INUG	Total Hg Filtered	ng/L	А	Surface	0.727	0.172
2020	21-Aug-20	WO2020-09-008	UoW	INUG-125	INUG	Total Hg Unfiltered	ng/L	А	Surface	0.484	0.172
2020	21-Aug-20	WO2020-09-008	UoW	INUG-125	INUG	Total Hg Filtered	ng/L	А	Surface	0.797	0.172
2020	22-Aug-20	WO2020-09-008	UoW	PDL-89	PDL	Total Hg Unfiltered	ng/L	А	Surface	0.467	0.172
2020	22-Aug-20	WO2020-09-008	UoW	PDL-89	PDL	Total Hg Filtered	ng/L	А	Surface	0.326	0.172
2020	22-Aug-20	WO2020-09-008	UoW	PDL-90	PDL	Total Hg Unfiltered	ng/L	А	Surface	0.46	0.172
2020	22-Aug-20	WO2020-09-008	UoW	PDL-90	PDL	Total Hg Filtered	ng/L	A	Surface	0.412	0.172
2020	23-Aug-20	WO2020-09-008	UoW	LK1-23	Lake D1	Total Hg Unfiltered	ng/L	A	Surface	0.895	0.172
2020	23-Aug-20	WO2020-09-008	UoW	LK1-23	Lake D1	Total Hg Filtered	ng/L	A	Surface	1.031	0.172
2020	23-Aug-20	WO2020-09-008	UoW	LK1-24	Lake D1	Total Hg Unfiltered	ng/L	А	Surface	0.517	0.172
2020	23-Aug-20	WO2020-09-008	UoW	LK1-24	Lake D1	Total Hg Filtered	ng/L	А	Surface	1.288	0.172
2020	23-Aug-20	WO2020-09-008	UoW	LK8-WQ01	Lake 8	Total Hg Unfiltered	ng/L	A	Surface	0.986	0.172
2020	23-Aug-20	WO2020-09-008	UoW	LK8-WQ01	Lake 8	Total Hg Filtered	ng/L	A	Surface	0.843	0.172
2020	23-Aug-20	WO2020-09-008	UoW	LK8-WQ02	Lake 8	Total Hg Unfiltered	ng/L	A	Surface	0.907	0.172
2020	23-Aug-20	WO2020-09-008	UoW	LK8-WQ02	Lake 8	Total Hg Filtered	ng/L	A	Surface	0.757	0.172
2020	23-Aug-20	WO2020-09-008	UoW	FIELD BLANK	FIELD BLANK	Total Hg Unfiltered	ng/L	A	Surface	0.23	0.172
2020	23-Aug-20	WO2020-09-008	UoW	FIELD BLANK	FIELD BLANK	Total Hg Filtered	ng/L	A	Surface	0.461	0.172
2020	29-Aug-20	WO2020-09-008	UoW	B3-WQ01	B3	Total Hg Unfiltered	ng/L	A	Surface	0.369	0.172
2020	29-Aug-20	WO2020-09-008	UoW	B3-WQ01	83	Total Hg Filtered	ng/L	A	Surface	0.401	0.172
2020	29-Aug-20	WO2020-09-008	UoW	B3-WQ02	83	Total Hg Unfiltered	ng/L	A	Surface	0.451	0.172
2020	29-Aug-20	WO2020-09-008	Uow	B3-WQ02		Total Hg Filtered	ng/L	A	Surface	0.412	0.172
2020	29-Jun-20	WO2020-09-008	Uow		IRAVEL BLANK	Notal Hg Unfiltered	ng/L	A	Surface	<0.172	0.172
2020	12-Aug-20	WO2020-09-009	UOW	A65-WQ01	A65	MeHg Unintered	ng/L	A	Surface	0.24	0.0178
2020	12-Aug-20	WO2020-09-009	LIOW	A65-WQ01	A65	Molig Infiltorod	ng/L	A .	Surface	0.208	0.0178
2020	12-Aug-20	WO2020-09-009	UoW	A65-WQ02	A65	MoHg Filtorod	ng/L	A A	Surface	0.212	0.0178
2020	12-Aug-20	W02020-09-009	LIO/W	WTI -W/001	Whale Tail	MeHg Unfiltered	nø/L	Δ	Surface	0.127	0.0178
2020	12-Aug-20	WO2020-09-009	LIOW	WTL-W001	Whale Tail	MeHg Filtered	ng/l	Δ	Surface	0.331	0.0178
2020	12-Aug-20	WO2020-09-009	UoW	WTL-WQ01	Whale Tail	MeHg Unfiltered	ng/L	В	Surface	0.447	0.0178
2020	12-Aug-20	WO2020-09-009	UoW	WTL-WQ01	Whale Tail	MeHg Filtered	ng/L	В	Surface	0.328	0.0178
2020	12-Aug-20	WO2020-09-009	UoW	WTL-WQ02	Whale Tail	MeHg Unfiltered	ng/L	A	Surface	0.499	0.0178
2020	12-Aug-20	WO2020-09-009	UoW	WTL-WQ02	Whale Tail	MeHg Filtered	ng/L	А	Surface	0.426	0.0178
2020	14-Aug-20	WO2020-09-009	UoW	A20-WQ01	A20	MeHg Unfiltered	ng/L	A	Surface	0.081	0.0178
2020	14-Aug-20	WO2020-09-009	UoW	A20-WQ01	A20	MeHg Filtered	ng/L	А	Surface	0.052	0.0178
2020	14-Aug-20	WO2020-09-009	UoW	A20-WQ01	A20	MeHg Unfiltered	ng/L	В	Surface	0.098	0.0178
2020	14-Aug-20	WO2020-09-009	UoW	A20-WQ01	A20	MeHg Filtered	ng/L	В	Surface	0.058	0.0178
2020	14-Aug-20	WO2020-09-009	UoW	A20-WQ02	A20	MeHg Unfiltered	ng/L	A	Surface	0.084	0.0178
2020	14-Aug-20	WO2020-09-009	UoW	A20-WQ02	A20	MeHg Filtered	ng/L	A	Surface	0.058	0.0178
2020	15-Aug-20	WO2020-09-009	UoW	MMT-WQ01	Mammoth	MeHg Unfiltered	ng/L	А	Surface	0.042	0.0178
2020	15-Aug-20	WO2020-09-009	UoW	MMT-WQ01	Mammoth	MeHg Filtered	ng/L	А	Surface	<0.0178	0.0178
2020	15-Aug-20	WO2020-09-009	UoW	MMT-WQ02	Mammoth	MeHg Unfiltered	ng/L	A	Surface	<0.0178	0.0178
2020	15-Aug-20	WO2020-09-009	UoW	MMT-WQ02	Mammoth	MeHg Filtered	ng/L	A	Surface	0.018	0.0178
2020	16-Aug-20	WO2020-09-009	UoW	A76-WQ01	A76	MeHg Unfiltered	ng/L	A	Surface	0.027	0.0178
2020	16-Aug-20	WO2020-09-009	UoW	A76-WQ01	A76	MeHg Filtered	ng/L	A	Surface	<0.0178	0.0178
2020	16-Aug-20	WO2020-09-009	UoW	A76-WQ02	A76	MeHg Unfiltered	ng/L	A	Surface	0.019	0.0178
2020	16-Aug-20	w02020-09-009	UoW	A76-WQ02	A/6	MeHg Filtered	ng/L	A .	Surface	<0.0178	0.0178
2020	17-Aug-20	W02020-09-009	UoW	DS1-WQ01	DS1	MeHg Unfiltered	ng/L	A .	Surface	0.067	0.0178
2020	17-Aug-20	wo2020-09-009	UoW	DS1-WQ01	D21	Note the filtered	ng/L	A	Surface	0.037	0.0178
2020	17-Aug-20	WO2020-09-009	UOW	DS1-WQ02	DS1		ng/L	A	Surface	<u.u1 8<="" td=""><td>0.0170</td></u.u1>	0.0170
2020	17-Aug-20	WO2020-09-009	UOW	DST-MO05			ng/L	A	Surface	0.022	0.0170
2020	21-Aug-20	WO2020-09-009	LOW	INUG-124	INUG		ng/L	A A	Surface	0.029	0.0178
2020	21-Aug-20	W02020-09-009	10//	INUG-124	INUG	MeHg Infiltered	ng/L	Δ.	Surface	<0.010 <0.0170	0.0170
2020	21-Aug-20	W02020-09-009	LIOW/	INUG-125	INUG	MeHg Filtered	ng/L	Δ	Surface	<0.0170	0.0178
2020	22-Aug-20	WO2020-09-009	UoW	PDL-89	PDL	MeHg Unfiltered	ng/L	A	Surface	<0.0178	0.0178
2020	22-Aug-20	WO2020-09-009	UoW	PDL-89	PDL	MeHg Filtered	ng/L	A	Surface	<0.0178	0.0178
2020	22-Aug-20	WO2020-09-009	UoW	PDL-90	PDL	- MeHg Unfiltered	ng/L	A	Surface	<0.0178	0.0178

Year	Date	Workorder	Collector	Site	Lake	Parameter	Units	Replicate	Sample Depth	Result	Detection Limit
2020	22-Aug-20	WO2020-09-009	UoW	PDL-90	PDL	MeHg Filtered	ng/L	A	Surface	<0.0178	0.0178
2020	23-Aug-20	WO2020-09-009	UoW	LK1-23	Lake D1	MeHg Unfiltered	ng/L	А	Surface	<0.0178	0.0178
2020	23-Aug-20	WO2020-09-009	LIOW	LK1-23	Lake D1	MeHg Filtered	ng/l	Δ	Surface	<0.0178	0.0178
2020	23-Aug-20	W02020-05-005		LK1-25	Lake D1	Molig Linfiltorod	ng/L	^	Surface	0.020	0.0178
2020	23-Aug-20	W02020-09-009	0000	LK1-24	Lake D1	Merig Offittered	ng/L	A	Surface	0.023	0.0178
2020	23-Aug-20	WO2020-09-009	Uow	LK1-24	Lake D1	MeHgFiltered	ng/L	A	Surface	0.023	0.0178
2020	23-Aug-20	WO2020-09-009	UoW	LK8-WQ01	Lake 8	MeHg Unfiltered	ng/L	A	Surface	<0.0178	0.0178
2020	23-Aug-20	WO2020-09-009	UoW	LK8-WQ01	Lake 8	MeHg Filtered	ng/L	A	Surface	<0.0178	0.0178
2020	23-Aug-20	WO2020-09-009	UoW	LK8-WQ02	Lake 8	MeHg Unfiltered	ng/L	A	Surface	<0.0178	0.0178
2020	23-Aug-20	WO2020-09-009	UoW	LK8-WQ02	Lake 8	MeHg Filtered	ng/L	Α	Surface	<0.0178	0.0178
2020	23-Aug-20	WO2020-09-009	UoW	FIELD BLANK	FIELD BLANK	MeHg Unfiltered	ng/L	А	Surface	<0.0178	0.0178
2020	23-Aug-20	WO2020-09-009	UoW	FIELD BLANK	FIELD BLANK	MeHg Filtered	ng/L	A	Surface	<0.0178	0.0178
2020	29-Aug-20	WO2020-09-009	UoW	B3-WQ01	В3	MeHg Unfiltered	ng/L	А	Surface	<0.0178	0.0178
2020	29-Aug-20	WO2020-09-009	UoW	B3-WQ01	В3	MeHg Filtered	ng/L	Α	Surface	<0.0178	0.0178
2020	29-Aug-20	WO2020-09-009	UoW	B3-W002	B3	MeHg Unfiltered	ng/L	А	Surface	<0.0178	0.0178
2020	29-Aug-20	WO2020-09-009	LIOW	B3-W002	83	MeHg Filtered	ng/L	A	Surface	<0.0178	0.0178
2020	20-Aug-20	W02020-05-005	11011/			Melig Infiltered	ng/L	^	Surface	<0.0178	0.0178
2020	29-Jun-20	W02020-09-009	Uow	TRAVEL BLANK	TRAVEL BLANK		ng/L	A	Surface	<0.0178	0.0178
2020	12-Aug-20	WO2020-09-009	Uow	NEM-WQ01	Nemo	Total Hg Unfiltered	ng/L	A	Surface	0.89	0.172
2020	12-Aug-20	WO2020-09-009	UoW	NEM-WQ01	Nemo	Total Hg Filtered	ng/L	A	Surface	0.867	0.172
2020	12-Aug-20	WO2020-09-009	UoW	NEM-WQ02	Nemo	Total Hg Unfiltered	ng/L	A	Surface	1.011	0.172
2020	12-Aug-20	WO2020-09-009	UoW	NEM-WQ02	Nemo	Total Hg Filtered	ng/L	A	Surface	0.57	0.172
2020	12-Aug-20	WO2020-09-009	UoW	A63-WQ01	A63	Total Hg Unfiltered	ng/L	A	Surface	3.264	0.172
2020	12-Aug-20	WO2020-09-009	UoW	A63-WQ01	A63	Total Hg Filtered	ng/L	А	Surface	1.962	0.172
2020	12-Aug-20	WO2020-09-009	UoW	A63-WQ02	A63	Total Hg Unfiltered	ng/L	Α	Surface	3.925	0.172
2020	12-Aug-20	WO2020-09-009	UoW	A63-WQ02	A63	Total Hg Filtered	ng/L	A	Surface	3.145	0.172
2020	29-Aug-20	WO2020-09-009	UoW	A44-WQ01	A44	Total Hg Unfiltered	ng/L	А	Surface	1.078	0.172
2020	29-Aug-20	WO2020-09-009	UoW	A44-WQ01	A44	Total Hg Filtered	ng/L	А	Surface	1.274	0.172
2020	29_ <u>Aug</u> 20	W02020-09-009	LIOW/	Δ44-₩/002	A44	Total Hg Unfiltered	na/I	A	Surface	1 08	0 172
2020	20 Aug-20	WO2020 00 000	LIGW		A44		116/ L		Curface	1 107	0.172
2020	23-Aug-20	WO2020-03-009	0000		Nama		ng/L	A .	Sunform	1.107	0.0172
2020	12-Aug-20	wozuzu-09-009	UoW	INEIVI-WQ01	ivenio		ng/L	A	Surface	0.024	0.0178
2020	12-Aug-20	WO2020-09-009	UoW	NEM-WQ01	Nemo	MeHg Filtered	ng/L	A	Surface	<0.0178	0.0178
2020	12-Aug-20	WO2020-09-009	UoW	NEM-WQ02	Nemo	MeHg Unfiltered	ng/L	A	Surface	0.031	0.0178
2020	12-Aug-20	WO2020-09-009	UoW	NEM-WQ02	Nemo	MeHg Filtered	ng/L	А	Surface	<0.0178	0.0178
2020	12-Aug-20	WO2020-09-009	UoW	A63-WQ01	A63	MeHg Unfiltered	ng/L	А	Surface	0.91	0.0178
2020	12-Aug-20	WO2020-09-009	UoW	A63-WQ01	A63	MeHg Filtered	ng/L	А	Surface	0.48	0.0178
2020	12-Aug-20	WO2020-09-009	UoW	A63-WQ02	A63	MeHg Unfiltered	ng/L	А	Surface	0.949	0.0178
2020	12-Aug-20	WO2020-09-009	UoW	A63-WQ02	A63	MeHg Filtered	ng/L	А	Surface	0.548	0.0178
2020	29-Aug-20	WO2020-09-009	UoW	A44-WQ01	A44	MeHg Unfiltered	ng/L	Α	Surface	0.019	0.0178
2020	29-Aug-20	WO2020-09-009	UoW	A44-W001	A44	MeHg Filtered	ng/l	Α	Surface	<0.0178	0.0178
2020	20 Aug 20	W02020 09 009		A44 W002	A44	Molig Linfiltorod	ng/L	^	Surface	<0.0178	0.0178
2020	23-Aug-20	W02020-09-009	0000	A44-WQ02	A44	Mella Filtered	ng/L	A	Surface	<0.0178	0.0178
2020	29-Aug-20	W02020-09-009	UOW	A44-WQ02	A44		ng/L	A	Surface	0.021	0.0178
2020	02-Dec-20	WO2020-12-005	Agnico	A20-MMP-M	A20 Profile	Total Hg Filtered	ng/L	A	10m	0.379	0.172
2020	02-Dec-20	WO2020-12-005	Agnico	A20-MMP-M	A20 Profile	Total Hg Filtered	ng/L	В	10m	0.381	0.172
2020	02-Dec-20	WO2020-12-005	Agnico	A20-MMP-S	A20 Profile	Total Hg Filtered	ng/L	A	3m	0.367	0.172
2020	02-Dec-20	WO2020-12-005	Agnico	A20-MMP-S	A20 Profile	Total Hg Filtered	ng/L	В	3m	0.376	0.172
2020	02-Dec-20	WO2020-12-005	Agnico	A20-MMP-D	A20 Profile	Total Hg Filtered	ng/L	А	17m	0.456	0.172
2020	02-Dec-20	WO2020-12-005	Agnico	A20-MMP-FB	FIELD BLANK	Total Hg Filtered	ng/L	А	Surface	<0.172	0.172
2020	02-Dec-20	WO2020-12-005	Agnico	A20-MMP-TB	TRAVEL BLANK	Total Hg Filtered	ng/L	A	Surface	<0.172	0.172
2020	02-Dec-20	WO2020-12-005	Agnico	A20-MMP-M	A20 Profile	Total Hg Unfiltered	ng/L	Α	10m	0.738	0.172
2020	02-Dec-20	WO2020-12-005	Agnico	A20-MMP-M	A20 Profile	Total Hg Unfiltered	ng/L	В	10m	0.719	0.172
2020	02-Dec-20	WO2020-12-005	Agnico	A20-MMP-S	A20 Profile	Total Hg Unfiltered	ng/l	Δ	3m	0.683	0 172
2020	02-Dec-20	WO2020-12-005	Agnico	A20-MMP-S	A20 Profile	Total Hg Unfiltered	ng/L	R	3m	0.694	0.172
2020	02-Det-20	W02020-12-005	Agnico	A20-101101F-3	A20 Profile	Total Hg Unfiltered	ng/L	в	47	0.094	0.172
2020	02-Dec-20	W02020-12-005	Agnico	A20-MIMP-D	A20 Profile	Total Hg Unflitered	ng/L	A	1/m	0.714	0.172
2020	02-Dec-20	WO2020-12-005	Agnico	A20-MMP-FB	FIELD BLANK	Total Hg Unfiltered	ng/L	A	Surface	<0.172	0.172
2020	02-Dec-20	WO2020-12-005	Agnico	A20-MMP-TB	TRAVEL BLANK	Total Hg Unfiltered	ng/L	A	Surface	<0.172	0.172
2020	02-Dec-20	WO2020-12-005	Agnico	A20-MMP-M	A20 Profile	MeHg Filtered	ng/L	A	10m	0.039	0.0178
2020	02-Dec-20	WO2020-12-005	Agnico	A20-MMP-M	A20 Profile	MeHg Filtered	ng/L	В	10m	0.059	0.0178
2020	02-Dec-20	WO2020-12-005	Agnico	A20-MMP-S	A20 Profile	MeHg Filtered	ng/L	А	3m	0.056	0.0178
2020	02-Dec-20	WO2020-12-005	Agnico	A20-MMP-S	A20 Profile	MeHg Filtered	ng/L	В	3m	0.063	0.0178
2020	02-Dec-20	WO2020-12-005	Agnico	A20-MMP-D	A20 Profile	MeHg Filtered	ng/L	А	17m	0.067	0.0178
2020	02-Dec-20	WO2020-12-005	Agnico	A20-MMP-FB	FIELD BLANK	MeHg Filtered	ng/L	А	Surface	<mrl< td=""><td>0.0178</td></mrl<>	0.0178
2020	02-Dec-20	WO2020-12-005	Agnico	A20-MMP-TB	TRAVEL BLANK	MeHg Filtered	ng/L	А	Surface	<mrl< td=""><td>0.0178</td></mrl<>	0.0178
2020	02-Dec-20	WO2020-12-005	Agnico	A20-MMP-M	A20 Profile	MeHg Unfiltered	ng/L	А	10m	0.072	0.0178
2020	()2-Dec-20	WQ2020-12-005	Agnico	A20-MAND. M	A20 Profile	MeHg Unfiltered	ng/l	R	10m	0.082	0.0178
2020	02 Doc 20	WO2020 12 005	Agnico		A20 Profile	MoHg Linfiltorod	··6/ -	^	3~	0.002	0.0170
2020	02 - Dec-20	WO2020-12-003	Agiiicu				118/ L	A	اااد ~~	0.007	0.0170
2020	02-Dec-20	wo2020-12-005	Agnico	AZU-IVIMP-S			ng/L	B	3m	0.08	0.01/8
2020	02-Dec-20	WO2020-12-005	Agnico	A20-MMP-D	A20 Profile	MeHg Unfiltered	ng/L	А	17m	0.086	0.0178
2020	02-Dec-20	WO2020-12-005	Agnico	A20-MMP-FB	FIELD BLANK	MeHg Unfiltered	ng/L	A	Surface	<mrl< td=""><td>0.0178</td></mrl<>	0.0178
2020	02-Dec-20	WO2020-12-005	Agnico	A20-MMP-TB	TRAVEL BLANK	MeHg Unfiltered	ng/L	A	Surface	<mrl< td=""><td>0.0178</td></mrl<>	0.0178
2021	07-Aug-21	WO2021-08-009	Azimuth	A76-55	A76	Total Hg Unfiltered	ng/L	A	Surface	0.39	0.01679
2021	07-Aug-21	WO2021-08-009	Azimuth	A76-56	A76	Total Hg Unfiltered	ng/L	A	Surface	0.37	0.01679
2021	07-Aug-21	WO2021-08-009	Azimuth	MAM-63	Mammoth	Total Hg Unfiltered	ng/L	A	Surface	0.54	0.01679
2021	07-Aug-21	WO2021-08-009	Azimuth	MAM-64	Mammoth	Total Hg Unfiltered	ng/L	А	Surface	0.48	0.01679
2021	10-Aug-21	WO2021-08-009	Azimuth	A20-57	A20	Total Hg Unfiltered	ng/L	A	Surface	1.14	0.01679
2021	- 10-Aug-21	WO2021-08-009	Azimuth	A20-58	A20	Total Hg Unfiltered	ng/L	А	Surface	0.94	0.01679
2021	10-Aug-21	WO2021-08-009	Azimuth	WTS-63	Whale Tail	Total Hg Unfiltered	nø/l	А	Surface	1.03	0.01679
2021	10-Διισ-21	W02021-08-009	Δzimuth	W/TS-6/	Whale Tail	Total Hg Unfiltered	6/ - na/I	A	Surface	1 10	0.01670
2021	11 A 24	WO2021-00-009	A=ime_+++	1//1.04	Lako D1		11g/ L		Current	1.10	0.01079
2021	11-Aug-21	WO2021-08-009	Azimuth	LK1-31	Lake D1	Total ng Untiltered	ng/L	A .	Surface	0.6/	0.016/9
2021	11-Aug-21	vvO2021-08-009	Azimuth	LK1-32	Lake D1	i otal Hg Unfiltered	ng/L	А	Surface	0.61	0.01679
2021	13-Aug-21	WO2021-08-009	Azimuth	A44-1	A44	ı otal Hg Unfiltered	ng/L	A	Surface	1.05	0.01679
2021	13-Aug-21	WO2021-08-009	Azimuth	A44-2	A44	Total Hg Unfiltered	ng/L	A	Surface	1.12	0.01679
2021	07-Aug-21	WO2021-08-009	Azimuth	MAM-64	Mammoth	Total Hg Unfiltered	ng/L	В	Surface	0.53	0.01679
2021	10-Aug-21	WO2021-08-009	Azimuth	WTS-63	Whale Tail	Total Hg Unfiltered	ng/L	В	Surface	1.01	0.01679
2021	10-Aug-21	WO2021-08-009	Azimuth	DI-1	FIELD BLANK	Total Hg Unfiltered	ng/L	A	Surface	<0.01679	0.01679
2021	15-Aug-21	WO2021-08-009	Azimuth	B3-1	В3	Total Hg Unfiltered	ng/L	A	Surface	0.39	0.01679
2021	15-Aug-21	WO2021-08-009	Azimuth	B3-2	В3	Total Hg Unfiltered	ng/L	A	Surface	0.47	0.01679
2021	12-Aug-21	WO2021-08-009	Azimuth	A65-1	A65	Total Hg Unfiltered	ng/L	A	Surface	1.57	0.01679
2021	12-Aug-21	WO2021-08-009	Azimuth	A65-2	A65	Total Hg Unfiltered	ng/L	A	Surface	1.71	0.01679

Year	Date	Workorder	Collector	Site	Lake	Parameter	Units	Replicate	Sample Depth	Result	Detection Limit
2021	15-Aug-21	WO2021-08-009	Azimuth	LK8-1	Lake 8	Total Hg Unfiltered	ng/L	А	Surface	0.38	0.01679
2021	15-Aug-21	WO2021-08-009	Azimuth	LK8-2	Lake 8	Total Hg Unfiltered	ng/L	А	Surface	0.36	0.01679
2021	15-Aug-21	WO2021-08-009	Azimuth	DS1-53	DS1	Total Hg Unfiltered	ng/L	A	Surface	0.89	0.01679
2021	15-Aug-21	WO2021-08-009	Azimuth	DS1-54	DS1	Total Hg Unfiltered	ng/L	A	Surface	1.64	0.01679
2021	16-Aug-21	WO2021-08-009	Azimuth	PDL-99 PDI-100	PDL	Total Hg Unfiltered	ng/L	A	Surface	0.28	0.01679
2021	18-Aug-21	W02021-08-009	Azimuth	INUG-134	INUG	Total Hg Unfiltered	ng/L	A	Surface	0.63	0.01679
2021	18-Aug-21	WO2021-08-009	Azimuth	INUG-135	INUG	Total Hg Unfiltered	ng/L	A	Surface	0.61	0.01679
2021	07-Aug-21	WO2021-08-009	Azimuth	A76-55	A76	Total Hg Filtered	ng/L	А	Surface	<0.01679	0.01679
2021	07-Aug-21	WO2021-08-009	Azimuth	A76-56	A76	Total Hg Filtered	ng/L	A	Surface	<0.01679	0.01679
2021	07-Aug-21	WO2021-08-009	Azimuth	MAM-63	Mammoth	Total Hg Filtered	ng/L	А	Surface	0.24	0.01679
2021	07-Aug-21	WO2021-08-009	Azimuth	MAM-64	Mammoth	Total Hg Filtered	ng/L	A	Surface	0.20	0.01679
2021	10-Aug-21	WO2021-08-009	Azimuth	A20-57	A20	Total Hg Filtered	ng/L	A	Surface	0.41	0.01679
2021	10-Aug-21	WO2021-08-009	Azimuth	A20-58 WTS-63	A20 Whale Tail	Total Hg Filtered	ng/L	A	Surface	0.37	0.01679
2021	10-Aug-21	W02021-08-009	Azimuth	WTS-64	Whale Tail	Total Hg Filtered	ng/L	A	Surface	0.45	0.01679
2021	11-Aug-21	WO2021-08-009	Azimuth	LK1-31	Lake D1	Total Hg Filtered	ng/L	A	Surface	0.30	0.01679
2021	11-Aug-21	WO2021-08-009	Azimuth	LK1-32	Lake D1	Total Hg Filtered	ng/L	А	Surface	0.28	0.01679
2021	13-Aug-21	WO2021-08-009	Azimuth	A44-1	A44	Total Hg Filtered	ng/L	A	Surface	0.54	0.01679
2021	13-Aug-21	WO2021-08-009	Azimuth	A44-2	A44	Total Hg Filtered	ng/L	A	Surface	0.57	0.01679
2021	07-Aug-21	WO2021-08-009	Azimuth	MAM-64	Mammoth	Total Hg Filtered	ng/L	В	Surface	0.26	0.01679
2021	10-Aug-21	WO2021-08-009	Azimuth	WTS-63	Whale Tail	Total Hg Filtered	ng/L	В	Surface	0.44	0.01679
2021	10-Aug-21	WO2021-08-009	Azimuth	DI-1 B3-1	R3	Total Hg Filtered	ng/L	A	Surface	<0.01679	0.01679
2021	15-Aug-21	W02021-08-009	Azimuth	B3-2	B3	Total Hg Filtered	ng/L	A	Surface	0.20	0.01679
2021	12-Aug-21	WO2021-08-009	Azimuth	A65-1	A65	Total Hg Filtered	ng/L	A	Surface	0.77	0.01679
2021	12-Aug-21	WO2021-08-009	Azimuth	A65-2	A65	Total Hg Filtered	ng/L	А	Surface	0.83	0.01679
2021	15-Aug-21	WO2021-08-009	Azimuth	LK8-1	Lake 8	Total Hg Filtered	ng/L	A	Surface	0.26	0.01679
2021	15-Aug-21	WO2021-08-009	Azimuth	LK8-2	Lake 8	Total Hg Filtered	ng/L	A	Surface	0.22	0.01679
2021	15-Aug-21	WO2021-08-009	Azimuth	DS1-53	DS1	Total Hg Filtered	ng/L	A .	Surface	0.49	0.01679
2021	15-Aug-21	WO2021-08-009	Azimuth	DS1-54	וטא דגח	i otal Hg Filtered	ng/L	A	Surface	0.99	0.01679
2021	16-Aug-21	WO2021-08-009	Azimuth	PDL-100	PDL	Total Hg Filtered	ng/L	A	Surface	<0.01679	0.01679
2021	18-Aug-21	WO2021-08-009	Azimuth	INUG-134	INUG	Total Hg Filtered	ng/L	A	Surface	0.349	0.01679
2021	18-Aug-21	WO2021-08-009	Azimuth	INUG-135	INUG	Total Hg Filtered	ng/L	А	Surface	0.352	0.01679
2021	07-Aug-21	WO2021-08-009	Azimuth	A76-55	A76	MeHg Filtered	ng/L	A	Surface	<0.022	0.022
2021	07-Aug-21	WO2021-08-009	Azimuth	A76-56	A76	MeHg Filtered	ng/L	A	Surface	<0.022	0.022
2021	07-Aug-21	WO2021-08-009	Azimuth	MAM-63	Mammoth	MeHg Filtered	ng/L	A	Surface	<0.022	0.022
2021	07-Aug-21	WO2021-08-009	Azimuth	MAM-64	Mammoth	MeHg Filtered	ng/L	A	Surface	0.02	0.022
2021	10-Aug-21	WO2021-08-009	Azimuth	A20-57	A20	MeHg Filtered	ng/L	A	Surface	0.05	0.022
2021	10-Aug-21	W02021-08-009	Azimuth	WTS-63	Whale Tail	MeHg Filtered	ng/L	A	Surface	0.105	0.022
2021	10-Aug-21	WO2021-08-009	Azimuth	WTS-64	Whale Tail	MeHg Filtered	ng/L	A	Surface	0.11	0.022
2021	11-Aug-21	WO2021-08-009	Azimuth	LK1-31	Lake D1	MeHg Filtered	ng/L	А	Surface	<0.022	0.022
2021	11-Aug-21	WO2021-08-009	Azimuth	LK1-32	Lake D1	MeHg Filtered	ng/L	А	Surface	<0.022	0.022
2021	13-Aug-21	WO2021-08-009	Azimuth	A44-1	A44	MeHg Filtered	ng/L	A	Surface	<0.022	0.022
2021	13-Aug-21	WO2021-08-009	Azimuth	A44-2	A44	MeHg Filtered	ng/L	A	Surface	<0.022	0.022
2021	07-Aug-21	WO2021-08-009	Azimuth	WTS-63	Whale Tail	MeHg Filtered	ng/L	В	Surface	0.025	0.022
2021	10-Aug-21	W02021-08-009	Azimuth	DI-1	FIELD BLANK	MeHg Filtered	ng/L	A	Surface	<0.022	0.022
2021	15-Aug-21	WO2021-08-009	Azimuth	B3-1	В3	MeHg Filtered	ng/L	А	Surface	<0.022	0.022
2021	15-Aug-21	WO2021-08-009	Azimuth	B3-2	B3	MeHg Filtered	ng/L	А	Surface	<0.022	0.022
2021	12-Aug-21	WO2021-08-009	Azimuth	A65-1	A65	MeHg Filtered	ng/L	A	Surface	0.10	0.022
2021	12-Aug-21	WO2021-08-009	Azimuth	A65-2	A65	MeHg Filtered	ng/L	A	Surface	0.11	0.022
2021	15-Aug-21	WO2021-08-009	Azimuth	LK8-1	Lake 8	MeHg Filtered	ng/L	A	Surface	<0.022	0.022
2021	15-Aug-21	WO2021-08-009	Azimuth	LK8-2	Lake 8	MeHg Filtered	ng/L	A	Surface	<0.022	0.022
2021	15-Aug-21	WO2021-08-009	Azimuth	DS1-55	D31	MeHg Filtered	ng/L	A 4	Surface	0.022	0.022
2021	16-Aug-21	WO2021-08-009	Azimuth	PDL-99	PDL	MeHg Filtered	ng/L	A	Surface	<0.022	0.022
2021	16-Aug-21	WO2021-08-009	Azimuth	PDL-100	PDL	MeHg Filtered	ng/L	A	Surface	<0.022	0.022
2021	18-Aug-21	WO2021-08-009	Azimuth	INUG-134	INUG	MeHg Filtered	ng/L	A	Surface	<0.022	0.022
2021	18-Aug-21	WO2021-08-009	Azimuth	INUG-135	INUG	MeHg Filtered	ng/L	A	Surface	<0.022	0.022
2021	07-Aug-21	WO2021-08-009	Azimuth	A76-55	A76	MeHg Unfiltered	ng/L	A	Surface	<0.022	0.022
2021	07-Aug-21	WO2021-08-009	Azimuth	A76-56	A76	MeHg Unfiltered	ng/L	A	Surface	<0.022	0.022
2021	07-Aug-21	W02021-08-009	Azimuth	IVIAIVI-63 MAM-64	Mammoth	Meng Unifiltered	ng/L	Δ	Surface	0.023	0.022
2021	10-Aug-21	WO2021-08-009	Azimuth	A20-57	A20	MeHg Unfiltered	ng/L	A	Surface	0.25	0.022
2021	10-Aug-21	WO2021-08-009	Azimuth	A20-58	A20	MeHg Unfiltered	ng/L	A	Surface	0.16	0.022
2021	10-Aug-21	WO2021-08-009	Azimuth	WTS-63	Whale Tail	MeHg Unfiltered	ng/L	A	Surface	0.44	0.022
2021	10-Aug-21	WO2021-08-009	Azimuth	WTS-64	Whale Tail	MeHg Unfiltered	ng/L	A	Surface	0.45	0.022
2021	11-Aug-21	W02021-08-009	Azimuth	LK1-31	Lake D1		ng/L	A	Surface	0.032	0.022
2021	11-Aug-21	W02021-08-009	Azimuth	LK1-32 A44-1		Meng Unfiltered	ng/L	Δ	Surface	0.029	0.022
2021	13-Aug-21	WO2021-08-009	Azimuth	A44-2	A44	MeHg Unfiltered	ng/L	A	Surface	0.039	0.022
2021	07-Aug-21	WO2021-08-009	Azimuth	MAM-64	Mammoth	MeHg Unfiltered	ng/L	В	Surface	0.042	0.022
2021	10-Aug-21	WO2021-08-009	Azimuth	WTS-63	Whale Tail	MeHg Unfiltered	ng/L	В	Surface	0.48	0.022
2021	10-Aug-21	WO2021-08-009	Azimuth	DI-1	FIELD BLANK	MeHg Unfiltered	ng/L	A	Surface	<0.022	0.022
2021	15-Aug-21	WO2021-08-009	Azimuth	B3-1	B3	MeHg Unfiltered	ng/L	А	Surface	<0.022	0.022
2021	15-Aug-21	W02021-08-009	Azimuth	B3-2	B3	MeHg Unfiltered	ng/L	A	Surface	<0.022	0.022
2021	12-Aug-21	W02021-08-009	Azimuth	A65-1 A65-2	A65	Meng Unfiltered	ng/L ng/l	А Д	Surface	0.30	0.022
2021	15-Aug-21	WO2021-08-009	Azimuth	LK8-1	Lake 8	MeHg Unfiltered	ng/L	A	Surface	0.08	0.022
2021	15-Aug-21	WO2021-08-009	Azimuth	LK8-2	Lake 8	MeHg Unfiltered	ng/L	A	Surface	<0.022	0.022
2021	15-Aug-21	WO2021-08-009	Azimuth	DS1-53	DS1	MeHg Unfiltered	ng/L	A	Surface	0.03	0.022
2021	15-Aug-21	WO2021-08-009	Azimuth	DS1-54	DS1	MeHg Unfiltered	ng/L	А	Surface	0.08	0.022
2021	16-Aug-21	WO2021-08-009	Azimuth	PDL-99	PDL	MeHg Unfiltered	ng/L	A	Surface	<0.022	0.022
2021	16-Aug-21	vvO2021-08-009	Azımuth	PDL-100	PUL	IVIEHg Unfiltered	ng/L	A	Surface	<0.022	0.022

					_					_	
Year	Date	Workorder	Collector	Site	Lake	Parameter	Units	Replicate	Sample Depth	Result	Detection Limit
2021	18-Aug-21	WO2021-08-009	Azimuth	INUG-134	INUG	MeHg Unfiltered	ng/L	A	Surface	<0.022	0.022
2021	18-Aug-21	WO2021-08-009	Azimuth	INUG-135	INUG	MeHg Unfiltered	ng/L	A	Surface	0.02	0.022
2022	16-Aug-22	WO2022-08-006	Azimuth	DS1-63	DS1	Total Hg Unfiltered	ng/L	А	Surface	0.88	0.01679
2022	16-Aug-22	WO2022-08-006	Azimuth	DS1-64	DS1	Total Hg Unfiltered	ng/L	А	Surface	0.84	0.01679
2022	14-Aug-22	WO2022-08-006	Azimuth	INUG-145	INUG	Total Hg Unfiltered	ng/L	А	Surface	0.58	0.01679
2022	14-Aug-22	W02022-08-006	Azimuth	INUG-144	INUG	Total Hg Unfiltered	ng/L	А	Surface	0.50	0.01679
2022	15-Aug-22	W02022-08-006	Azimuth	PDI -109	PDI	Total Hg Unfiltered	ng/l	A	Surface	0.49	0.01679
2022	15 Aug 22	W02022 08 000	Azimuth	PDL 103		Total Hg Unfiltered	ng/L	^	Surface	0.49	0.01679
2022	15-Aug-22	W02022-08-006	Azimuth	PDL-110		Total Hg Unfiltered	ng/L	A	Surface	0.49	0.01679
2022	17-Aug-22	WO2022-08-006	Azimuth	W15-73	Whale Tail	Total Hg Unfiltered	ng/L	A	Surface	1.81	0.01679
2022	17-Aug-22	WO2022-08-006	Azimuth	WTS-74	Whale Tail	Total Hg Unfiltered	ng/L	A	Surface	1.72	0.01679
2022	19-Aug-22	WO2022-08-006	Azimuth	A44-4	A44	Total Hg Unfiltered	ng/L	A	Surface	0.99	0.01679
2022	19-Aug-22	WO2022-08-006	Azimuth	A44-3	A44	Total Hg Unfiltered	ng/L	А	Surface	4.25	0.01679
2022	17-Aug-22	WO2022-08-006	Azimuth	MAM-73	Mammoth	Total Hg Unfiltered	ng/L	А	Surface	0.90	0.01679
2022	17-Aug-22	WO2022-08-006	Azimuth	MAM-74	Mammoth	Total Hg Unfiltered	ng/L	A	Surface	0.79	0.01679
2022	18-Aug-22	WO2022-08-006	Azimuth	B3-3	В3	Total Hg Unfiltered	ng/L	А	Surface	1.43	0.01679
2022	18-Aug-22	W02022-08-006	Azimuth	B3-4	B3	Total Hg Unfiltered	ng/L	А	Surface	5.61	0.01679
2022	19-Δug-22	WO2022-08-006	Azimuth	A65-3	465	Total Hg Unfiltered	ng/l	Δ	Surface	1.67	0.01679
2022	10 Aug 22	W02022 08 000	Azimuth	AGE 4	A65	Total Hg Unfiltered	ng/L	A	Surface	1.67	0.01670
2022	17 Aug 22	W02022 00 000	Animouth	100 4	130	Total IIg Unfiltered	ng/L	<u>л</u>	Surface	1.34	0.01075
2022	17-Aug-22	W02022-08-008	Azimuth	A20-87	A20		lig/L	A	Surface	1.20	0.01679
2022	17-Aug-22	WO2022-08-006	Azimuth	A20-68	A20	Total Hg Unfiltered	ng/L	A	Surface	1.19	0.01679
2022	16-Aug-22	WO2022-08-006	Azimuth	A76-65	A76	Total Hg Unfiltered	ng/L	A	Surface	0.63	0.01679
2022	16-Aug-22	WO2022-08-006	Azimuth	A76-66	A76	Total Hg Unfiltered	ng/L	A	Surface	10.90	0.01679
2022	15-Aug-22	WO2022-08-006	Azimuth	MAM-74	Mammoth	Total Hg Unfiltered	ng/L	В	Surface	1.38	0.01679
2022	19-Aug-22	WO2022-08-006	Azimuth	A44-4	A44	Total Hg Unfiltered	ng/L	В	Surface	1.49	0.01679
2022	22-Aug-22	WO2022-08-006	Azimuth	AUG-DI	DI BLANK	Total Hg Unfiltered	ng/L	A	Surface	0.32	0.01679
2022	22-Aug-22	WO2022-08-006	Azimuth	AUG-TB	TRAVEL BLANK	Total Hg Unfiltered	ng/L	A	Surface	0.17	0.01679
2022	16-Aug-22	WO2022-08-006	Azimuth	DS1-63	DS1	Total Hg Filtered	ng/L	А	Surface	0.30	0.01679
2022	16-Aug-22	WO2022-08-006	Azimuth	DS1-64	DS1	- Total Hg Filtered	ng/L	А	Surface	0.48	0.01679
2022	14-Aug-22	W02022-08-006	Azimuth	INUG-1/45	INUG	Total Hg Filtered	ng/l	Δ.	Surface	0.25	0.01679
2022	14 4 22	WO2022 08 000	Asimuth	INUC 144		Total Ha Eiltorod	··6/ -		Curface	0.20	0.01073
2022	14-Aug-22		Azimuth	INUG-144		Total Ha Filtered	ng/L	A .	Surfa	0.28	0.01079
2022	15-Aug-22	WO2022-08-006	Azimuth	PDL-109	PDL	Total Hg Filtered	ng/L	A	Surface	0.30	0.01679
2022	15-Aug-22	WO2022-08-006	Azimuth	PDL-110	PDL	Total Hg Filtered	ng/L	A	Surface	0.26	0.01679
2022	17-Aug-22	WO2022-08-006	Azimuth	WTS-73	Whale Tail	Total Hg Filtered	ng/L	A	Surface	0.60	0.01679
2022	17-Aug-22	WO2022-08-006	Azimuth	WTS-74	Whale Tail	Total Hg Filtered	ng/L	A	Surface	0.46	0.01679
2022	19-Aug-22	WO2022-08-006	Azimuth	A44-4	A44	Total Hg Filtered	ng/L	А	Surface	0.41	0.01679
2022	19-Aug-22	WO2022-08-006	Azimuth	A44-3	A44	Total Hg Filtered	ng/L	А	Surface	0.59	0.01679
2022	17-Aug-22	WO2022-08-006	Azimuth	MAM-73	Mammoth	Total Hg Filtered	ng/L	A	Surface	0.31	0.01679
2022	17-Aug-22	WO2022-08-006	Azimuth	MAM-74	Mammoth	Total Hg Filtered	ng/L	Α	Surface	0.39	0.01679
2022	18-Aug-22	W02022-08-006	Azimuth	B3-3	B3	Total Hg Filtered	ng/L	А	Surface	0.39	0.01679
2022	18-Aug-22	W02022-08-006	Azimuth	B3-4	83	Total Hg Filtered	ng/L	A	Surface	1 74	0.01679
2022	10-Aug-22	W02022-08-000	Azimuth	B3-4	D5	Total Hg Filtered	ng/L	A	Surface	1.74	0.01073
2022	19-Aug-22	W02022-08-006	Azimuth	A05-3	A05	Total Hg Filtered	ng/L	A	Surface	0.45	0.01679
2022	19-Aug-22	WO2022-08-006	Azimuth	A65-4	A65	Total Hg Filtered	ng/L	A	Surface	0.41	0.01679
2022	17-Aug-22	WO2022-08-006	Azimuth	A20-67	A20	Total Hg Filtered	ng/L	A	Surface	0.33	0.01679
2022	17-Aug-22	WO2022-08-006	Azimuth	A20-68	A20	Total Hg Filtered	ng/L	A	Surface	0.31	0.01679
2022	16-Aug-22	WO2022-08-006	Azimuth	A76-65	A76	Total Hg Filtered	ng/L	Α	Surface	0.17	0.01679
2022	16-Aug-22	WO2022-08-006	Azimuth	A76-66	A76	Total Hg Filtered	ng/L	А	Surface	2.44	0.01679
2022	15-Aug-22	WO2022-08-006	Azimuth	MAM-74	Mammoth	Total Hg Filtered	ng/L	В	Surface	0.34	0.01679
2022	19-Aug-22	WO2022-08-006	Azimuth	A44-4	A44	Total Hg Filtered	ng/L	В	Surface	0.62	0.01679
2022	22-Aug-22	WO2022-08-006	Azimuth	AUG-DI	DI BLANK	Total Hg Filtered	ng/L	Α	Surface	0.22	0.01679
2022	22-Aug-22	W02022-08-006	Azimuth	AUG-TB	τρανεί βιανκ	Total Hg Filtered	ng/l	Δ	Surface	<0.01679	0.01679
2022	16 Aug 22	W02022 08 000	Azimuth	DS1 62	DS1	Molig Lipfiltorod	ng/L	^	Surface	0.04	0.0286
2022	10-Aug-22	W02022-08-000	Azimuth	D31-03	531		iig/L	A .	Surface	0.04	0.0280
2022	16-Aug-22	WO2022-08-006	Azimuth	DS1-64	DS1	MeHg Unfiltered	ng/L	A	Surface	<0.0286	0.0286
2022	14-Aug-22	WO2022-08-006	Azimuth	INUG-145	INUG	MeHg Unfiltered	ng/L	A	Surface	<0.0286	0.0286
2022	14-Aug-22	WO2022-08-006	Azimuth	INUG-144	INUG	MeHg Unfiltered	ng/L	A	Surface	<0.0286	0.0286
2022	15-Aug-22	WO2022-08-006	Azimuth	PDL-109	PDL	MeHg Unfiltered	ng/L	A	Surface	<0.0286	0.0286
2022	15-Aug-22	WO2022-08-006	Azimuth	PDL-110	PDL	MeHg Unfiltered	ng/L	А	Surface	<0.0286	0.0286
2022	17-Aug-22	WO2022-08-006	Azimuth	WTS-73	Whale Tail	MeHg Unfiltered	ng/L	А	Surface	0.63	0.0286
2022	17-Aug-22	WO2022-08-006	Azimuth	WTS-74	Whale Tail	MeHg Unfiltered	ng/L	А	Surface	0.68	0.0286
2022	19-Aug-22	WO2022-08-006	Azimuth	A44-4	A44	MeHg Unfiltered	ng/L	A	Surface	0.03	0.0286
2022	19-Aug-22	WO2022-08-006	Azimuth	A44-3	A44	MeHg Unfiltered	ng/L	A	Surface	0.04	0.0286
2022	17-Aug-22	WO2022-08-006	Azimuth	MAM-73	Mammoth	MeHg Unfiltered	ng/L	А	Surface	0.03	0.0286
2022	17-Aug-22	WO2022-08-006	Azimuth	MAM-74	Mammoth	MeHg Unfiltered	ng/L	А	Surface	<0.0286	0.0286
2022	18-Aug-22	W02022-08-006	Azimuth	R3-3	B3	MeHg Unfiltered	nø/l	Δ	Surface	<0.0286	0.0286
2022	10 100 22	W()2022 08 006	Azimuth	D3 3	R2	MaHa Unfiltorod	116/ L		Curface	<0.0200	0.0200
2022	10-Aug-22	W02022-00-000	Azimuth	D3-4	55 AGE		ng/L	A .	Sundce	<u>\</u> U.U280	0.0200
2022	19-Aug-22	W02022-08-006	Azimuth	A05-3	CON		ng/L	A	Surface	0.30	0.0286
2022	19-Aug-22	WO2022-08-006	Azimuth	A65-4	A65	MeHg Unfiltered	ng/L	A	Surface	0.33	0.0286
2022	17-Aug-22	WO2022-08-006	Azimuth	A20-67	A20	MeHg Unfiltered	ng/L	A	Surface	0.14	0.0286
2022	17-Aug-22	WO2022-08-006	Azimuth	A20-68	A20	MeHg Unfiltered	ng/L	А	Surface	0.12	0.0286
2022	16-Aug-22	WO2022-08-006	Azimuth	A76-65	A76	MeHg Unfiltered	ng/L	A	Surface	<0.0286	0.0286
2022	16-Aug-22	WO2022-08-006	Azimuth	A76-66	A76	MeHg Unfiltered	ng/L	A	Surface	<0.0286	0.0286
2022	15-Aug-22	WO2022-08-006	Azimuth	MAM-74	Mammoth	MeHg Unfiltered	ng/L	В	Surface	<0.0286	0.0286
2022	19-Aug-22	WO2022-08-006	Azimuth	A44-4	A44	MeHg Unfiltered	ng/L	В	Surface	<0.0286	0.0286
2022	22-Aug-22	WO2022-08-006	Azimuth	AUG-DI	DI BLANK	MeHg Unfiltered	ng/L	А	Surface	<0.0286	0.0286
2022	22-Aug-22	W02022-08-006	Azimuth	AUG-TR	TRAVEL BLANK	MeHg Unfiltered	nø/l	Α	Surface	<0.0286	0.0286
2022	16- <u>Διισ.</u> 22	W02022-08-006	Δzimuth	D\$1_62	DS1	MeHg Filtered	na/l	Δ	Surface	<0 0.286	0.0286
2022	16 Aur 22	W()2022-00-000	Asimuth	D01-03	DS1	MoHa Filtorod	116/ L	^	Curface	<0.0200	0.0200
2022	10-Aug-22	W02022-00-000	Azimuth	031-04		Mella Filteres 1	11g/L	A .	Surface	<u.u280< td=""><td>0.0280</td></u.u280<>	0.0280
2022	14-Aug-22	vvU2U22-08-006	Azimuth	INUG-145		IVIEHg Filtered	ng/L	A	Surface	<0.0286	0.0286
2022	14-Aug-22	WO2022-08-006	Azimuth	INUG-144	INUG	MeHg Filtered	ng/L	A	Surface	<0.0286	0.0286
2022	15-Aug-22	WO2022-08-006	Azimuth	PDL-109	PDL	MeHg Filtered	ng/L	A	Surface	<0.0286	0.0286
2022	15-Aug-22	WO2022-08-006	Azimuth	PDL-110	PDL	MeHg Filtered	ng/L	A	Surface	<0.0286	0.0286
2022	17-Aug-22	WO2022-08-006	Azimuth	WTS-73	Whale Tail	MeHg Filtered	ng/L	А	Surface	0.25	0.0286
2022	17-Aug-22	WO2022-08-006	Azimuth	WTS-74	Whale Tail	MeHg Filtered	ng/L	A	Surface	0.16	0.0286
2022	19-Aug-22	WO2022-08-006	Azimuth	A44-4	A44	MeHg Filtered	ng/L	А	Surface	<0.0286	0.0286
2022	19-Aug-22	WO2022-08-006	Azimuth	A44-3	A44	MeHg Filtered	ng/L	A	Surface	<0.0286	0.0286
2022	17-Aug-22	WO2022-08-006	Azimuth	MAM-73	Mammoth	MeHg Filtered	ng/L	A	Surface	<0.0286	0.0286
2022	17-Aug-22	WO2022-08-006	Azimuth	MAM-74	Mammoth	MeHg Filtered	ng/L	А	Surface	<0.0286	0.0286
2022	18-Aug-22	W02022-08-006	Azimuth	R2-2	B3	MeHg Filtered	nø/l	Δ	Surface	<0.0286	0.0286
2022	/ WB 22				1		''ъ/ L		Sandee	-0.0200	0.0200

Year	Date	Workorder	Collector	Site	Lake	Parameter	Units	Replicate	Sample Depth	Result	Detection Limit
2022	18-Aug-22	WO2022-08-006	Azimuth	B3-4	В3	MeHg Filtered	ng/L	A	Surface	<0.0286	0.0286
2022	19-Aug-22	WO2022-08-006	Azimuth	A65-3	A65	MeHg Filtered	ng/L	А	Surface	0.09	0.0286
2022	19-Aug-22	WO2022-08-006	Azimuth	A65-4	A65	MeHg Filtered	ng/L	A	Surface	0.08	0.0286
2022	17-Aug-22	WO2022-08-006	Azimuth	A20-67	A20	MeHg Filtered	ng/L	A	Surface	0.04	0.0286
2022	17-Aug-22	WO2022-08-006	Azimuth	A20-68	A20	MeHg Filtered	ng/L	A	Surface	0.04	0.0286
2022	16-Aug-22	WO2022-08-006	Azimuth	A76-65	A76	MeHg Filtered	ng/L	Δ	Surface	<0.0286	0.0286
2022	15-Aug-22	W02022-08-000	Azimuth	MAM-74	Mammoth	MeHg Filtered	ng/L	В	Surface	<0.0286	0.0286
2022	19-Aug-22	WO2022-08-006	Azimuth	A44-4	A44	MeHg Filtered	ng/L	В	Surface	<0.0286	0.0286
2022	22-Aug-22	WO2022-08-006	Azimuth	AUG-DI	DI BLANK	MeHg Filtered	ng/L	А	Surface	<0.0286	0.0286
2022	22-Aug-22	WO2022-08-006	Azimuth	AUG-TB	TRAVEL BLANK	MeHg Filtered	ng/L	А	Surface	<0.0286	0.0286
2023	22-Aug-23	WO2023-08-012	Azimuth	INUG-152	INUG	Total Hg Unfiltered	ng/L	A	Surface	0.38	0.1603
2023	22-Aug-23	WO2023-08-012	Azimuth	INUG-153	INUG	Total Hg Unfiltered	ng/L	A	Surface	0.30	0.1603
2023	22-Aug-23	WO2023-08-012	Azimuth	PDL-117	PDL	Total Hg Unfiltered	ng/L	А	Surface	<0.1603	0.1603
2023	22-Aug-23	WO2023-08-012	Azimuth	PDL-118	PDL	Total Hg Unfiltered	ng/L	A	Surface	0.17	0.1603
2023	17-Aug-23	WO2023-08-012	Azimuth	DS1-71	DS1	Total Hg Unfiltered	ng/L	A	Surface	0.45	0.1603
2023	17-Aug-23	WO2023-08-012	Azimuth	DS1-72	DS1	Total Hg Unfiltered	ng/L	A	Surface	0.60	0.1603
2023	14-Aug-23	W02023-08-012	Azimuth	WTS-81	WTS	Total Hg Unfiltered	ng/L	A	Surface	0.99	0.1603
2023	14-Aug-23	W02023-08-012	Azimuth	WIS-82	WIS	Total Hg Unfiltered	ng/L	A	Surface	0.97	0.1603
2023	15-Aug-23	W02023-08-012	Azimuth	MAM-81	MAM	Total Hg Unfiltered	ng/L	A A	Surface	0.44	0.1603
2023	20-Aug-23	W02023-08-012	Azimuth	A65-5	A65	Total Hg Unfiltered	ng/L	A	Surface	0.85	0.1603
2023	20-Aug-23	WO2023-08-012	Azimuth	A65-6	A65	Total Hg Unfiltered	ng/L	А	Surface	0.75	0.1603
2023	18-Aug-23	WO2023-08-012	Azimuth	A20-75	A20	Total Hg Unfiltered	ng/L	A	Surface	0.49	0.1603
2023	18-Aug-23	WO2023-08-012	Azimuth	A20-76	A20	Total Hg Unfiltered	ng/L	А	Surface	0.38	0.1603
2023	15-Aug-23	WO2023-08-012	Azimuth	MAM-82	MAM	Total Hg Unfiltered	ng/L	В	Surface	0.33	0.1603
2023	18-Aug-23	WO2023-08-012	Azimuth	A20-75	A20	Total Hg Unfiltered	ng/L	В	Surface	0.44	0.1603
2023	20-Aug-23	WO2023-08-012	Azimuth	DI-Blank	DI BLANK	Total Hg Unfiltered	ng/L	А	Surface	<0.1603	0.1603
2023	20-Aug-23	WO2023-08-012	Azimuth	AUG-TB	TRAVEL BLANK	Total Hg Unfiltered	ng/L	A	Surface	<0.1603	0.1603
2023	22-Aug-23	WO2023-08-012	Azimuth	INUG-152	INUG	Total Hg Filtered	ng/L	A	Surface	0.27	0.1603
2023	22-Aug-23	WO2023-08-012	Azimuth	INUG-153	INUG	Total Hg Filtered	ng/L	A	Surface	0.31	0.1603
2023	22-Aug-23	WO2023-08-012	Azimuth	PDL-117	PDL	Total Hg Filtered	ng/L	A	Surface	<0.1603	0.1603
2023	17-Aug-23	WO2023-08-012	Azimuth	DS1-71	DS1	Total Hg Filtered	ng/L	A	Surface	0.1605	0.1603
2023	17-Aug-23	W02023-08-012	Azimuth	DS1 71 DS1-72	DS1	Total Hg Filtered	ng/L	A	Surface	0.10	0.1603
2023	14-Aug-23	WO2023-08-012	Azimuth	WTS-81	WTS	Total Hg Filtered	ng/L	А	Surface	0.38	0.1603
2023	14-Aug-23	WO2023-08-012	Azimuth	WTS-82	WTS	Total Hg Filtered	ng/L	A	Surface	0.33	0.1603
2023	15-Aug-23	WO2023-08-012	Azimuth	MAM-81	MAM	Total Hg Filtered	ng/L	А	Surface	0.19	0.1603
2023	15-Aug-23	WO2023-08-012	Azimuth	MAM-82	MAM	Total Hg Filtered	ng/L	А	Surface	0.23	0.1603
2023	20-Aug-23	WO2023-08-012	Azimuth	A65-5	A65	Total Hg Filtered	ng/L	A	Surface	0.31	0.1603
2023	20-Aug-23	WO2023-08-012	Azimuth	A65-6	A65	Total Hg Filtered	ng/L	А	Surface	0.26	0.1603
2023	18-Aug-23	WO2023-08-012	Azimuth	A20-75	A20	Total Hg Filtered	ng/L	A	Surface	0.22	0.1603
2023	18-Aug-23	WO2023-08-012	Azimuth	A20-76	A20	Total Hg Filtered	ng/L	A	Surface	0.23	0.1603
2023	15-Aug-23	WO2023-08-012	Azimuth	MAM-82	MAM	Total Hg Filtered	ng/L	В	Surface	0.21	0.1603
2023	18-Aug-23	WO2023-08-012	Azimuth	A20-75		Total Hg Filtered	ng/L	В	Surface	0.40	0.1603
2023	20-Aug-23	WO2023-08-012	Azimuth		TRAVEL BLANK	Total Hg Filtered	ng/L	A	Surface	<0.1603	0.1603
2023	20-Aug-23	W02023-08-012	Azimuth	INUG-152	INUG	MeHg Unfiltered	ng/L	A	Surface	<0.0342	0.0342
2023	22-Aug-23	W02023-08-012	Azimuth	INUG-152	INUG	MeHg Unfiltered	ng/L	A	Surface	<0.0342	0.0342
2023	22-Aug-23	WO2023-08-012	Azimuth	PDL-117	PDL	MeHg Unfiltered	ng/L	А	Surface	<0.0342	0.0342
2023	22-Aug-23	WO2023-08-012	Azimuth	PDL-118	PDL	MeHg Unfiltered	ng/L	A	Surface	<0.0342	0.0342
2023	17-Aug-23	WO2023-08-012	Azimuth	DS1-71	DS1	MeHg Unfiltered	ng/L	А	Surface	<0.0342	0.0342
2023	17-Aug-23	WO2023-08-012	Azimuth	DS1-72	DS1	MeHg Unfiltered	ng/L	A	Surface	0.06	0.0342
2023	14-Aug-23	WO2023-08-012	Azimuth	WTS-81	WTS	MeHg Unfiltered	ng/L	Α	Surface	0.54	0.0342
2023	14-Aug-23	WO2023-08-012	Azimuth	WTS-82	WTS	MeHg Unfiltered	ng/L	A	Surface	0.56	0.0342
2023	15-Aug-23	WO2023-08-012	Azimuth	MAM-81	MAM	MeHg Unfiltered	ng/L	A	Surface	0.05	0.0342
2023	15-Aug-23	WO2023-08-012	Azimuth	MAM-82	MAM	MeHg Unfiltered	ng/L	A	Surface	<0.0342	0.0342
2023	20-Aug-23	WO2023-08-012	Azimuth	A65-5	A65		ng/L	A	Surface	0.33	0.0342
2023	20-Aug-23	W02023-08-012	Azimuth Azimuth	Α05-0 Δ20_75	A20	MeHg Unfiltered	ng/L	A A	Surface	0.24	0.0342
2023	18-Aug-23	W02023-08-012	Δzimuth	A20-75	A20		ng/L	Δ	Surface	0.12	0.0542
2023	15-Aug-23	WO2023-08-012	Azimuth	MAM-82	MAM	MeHg Unfiltered	ng/L	B	Surface	<0.0342	0.0342
2023	18-Aug-23	WO2023-08-012	Azimuth	A20-75	A20	MeHg Unfiltered	ng/L	В	Surface	0.13	0.0342
2023	20-Aug-23	WO2023-08-012	Azimuth	DI-Blank	DI BLANK	MeHg Unfiltered	ng/L	A	Surface	<0.0342	0.0342
2023	20-Aug-23	WO2023-08-012	Azimuth	AUG-TB	TRAVEL BLANK	MeHg Unfiltered	ng/L	А	Surface	<0.0342	0.0342
2023	22-Aug-23	WO2023-08-012	Azimuth	INUG-152	INUG	MeHg Filtered	ng/L	А	Surface	< 0.0342	0.0342
2023	22-Aug-23	WO2023-08-012	Azimuth	INUG-153	INUG	MeHg Filtered	ng/L	A	Surface	<0.0342	0.0342
2023	22-Aug-23	WO2023-08-012	Azimuth	PDL-117	PDL	MeHg Filtered	ng/L	A	Surface	<0.0342	0.0342
2023	22-Aug-23	WO2023-08-012	Azimuth	PDL-118	PDL	MeHg Filtered	ng/L	А	Surface	<0.0342	0.0342
2023	17-Aug-23	WO2023-08-012	Azimuth	DS1-71	DS1	MeHg Filtered	ng/L	A	Surface	<0.0342	0.0342
2023	17-Aug-23	WO2023-08-012	Azimuth	DS1-72	DS1	MeHg Filtered	ng/L	A	Surface	<0.0342	0.0342
2023	14-Aug-23	WO2023-08-012	Azimuth	WTS-81	WTS		ng/L	A	Surface	0.11	0.0342
2023	14-Aug-23	WO2023-08-012	Azimuth	WTS-82	W15		ng/L	A .	Surface	0.11	0.0342
2023	15-Aug-23	WO2023-08-012	Azimuth	IVIAIVI-81	MAM		ng/L	A A	Surface	<0.0342	0.0342
2023	20-Aug-23	W02023-08-012	Azimuth	A65-5	A65	MeHg Filtered	ng/L	A	Surface	0.0342	0.0342
2023	20-Aug-23	WO2023-08-012	Azimuth	A65-6	A65	MeHg Filtered	ng/L	A	Surface	0.07	0.0342
2023	18-Aug-23	WO2023-08-012	Azimuth	A20-75	A20	MeHg Filtered	ng/L	A	Surface	0.05	0.0342
2023	18-Aug-23	WO2023-08-012	Azimuth	A20-76	A20	MeHg Filtered	ng/L	А	Surface	<0.0342	0.0342
2023	15-Aug-23	WO2023-08-012	Azimuth	MAM-82	MAM	MeHg Filtered	ng/L	В	Surface	<0.0342	0.0342
2023	18-Aug-23	WO2023-08-012	Azimuth	A20-75	A20	MeHg Filtered	ng/L	В	Surface	<0.0342	0.0342
2023	20-Aug-23	WO2023-08-012	Azimuth	DI-Blank	DI BLANK	MeHg Filtered	ng/L	A	Surface	<0.0342	0.0342
2023	20-Aug-23	WO2023-08-012	Azimuth	AUG-TB	TRAVEL BLANK	MeHg Filtered	ng/L	A	Surface	<0.0342	0.0342

APPENDIX B SEDIMENT DATA APPENDIX B1 SEDIMENT MERCURY DATABASE

Vear	Sample ID	Lake	Method	Depth Start	Depth End	Date	THe	Molia	THg	MeHg	Hallpite	Notor
rear	Sample ib	Lake	Wiethou	(cm)	(cm)	Date	1115	wieng	Limit	Limit	ng onits	notes
2016	WTS-1	WTS	grab	0	5	12-Aug-16	0.079	0.00059	0.0050	0.00005	mg/kg dw	
2016	WTS-2	WTS	grab	0	5	12-Aug-16	0.068	0.00033	0.0050	0.00005	mg/kg dw	
2016	WTS-3	WTS	grab	0	5	12-Aug-16	0.082	0.00100	0.0050	0.00005	mg/kg dw	
2016	WTS-5	WTS	grab	0	5	12-Aug-10	0.093	0.00040	0.0050	0.00005	mg/kg dw	
2016	PDL-1	PDL	grab	0	5	06-Aug-16	0.010	-	0.0050	-	mg/kg dw	
2016	PDL-2	PDL	grab	0	5	06-Aug-16	0.015	-	0.0050		mg/kg dw	
2016	PDL-3	PDL	grab	0	5	06-Aug-16	0.011	-	0.0050	-	mg/kg dw	
2016	PDL-4	PDL	grab	0	5	06-Aug-16	0.012	-	0.0050	-	mg/kg dw	
2016	INUG-1	INUG	grab	0	5	00-Aug-16	0.0098	-	0.0050	-	mg/kg dw	
2016	INUG-2	INUG	grab	0	5	07-Aug-16	0.030	-	0.0050	-	mg/kg dw	
2016	INUG-3	INUG	grab	0	5	07-Aug-16	0.023	-	0.0050	-	mg/kg dw	
2016	INUG-4	INUG	grab	0	5	07-Aug-16	0.029	-	0.0050	-	mg/kg dw	
2016	INUG-5	INUG	grab	0	5	07-Aug-16	0.027	-	0.0050	-	mg/kg dw	
2016	MAM-1	MAM	grab	0	5	14-Aug-16	0.094	-	0.0050	-	mg/kg dw	
2016	MAM-2	MAM	grab	0	5	14-Aug-10	0.12	-	0.0050	-	mg/kg dw	
2016	MAM-4	MAM	grab	0	5	14-Aug-16	0.10	-	0.0050	-	mg/kg dw	
2016	MAM-5	MAM	grab	0	5	14-Aug-16	0.039	-	0.0050	-	mg/kg dw	
2016	A20-1	A20	grab	0	5	14-Aug-16	0.054	-	0.0050	-	mg/kg dw	
2016	A20-2	A20	grab	0	5	14-Aug-16	0.048	-	0.0050	-	mg/kg dw	
2016	A20-3	A20	grab	0	5	14-Aug-16	0.062	-	0.0050		mg/kg dw	
2016	A20-5	A20	grab	0	5	14-Aug-16	0.051	-	0.0050	-	mg/kg dw	
2016	DS1-1	DS1	grab	0	5	16-Aug-16	0.070	-	0.0050		mg/kg dw	
2016	DS1-2	DS1	grab	0	5	16-Aug-16	0.068	-	0.0050	-	mg/kg dw	
2016	DS1-3	DS1	grab	0	5	16-Aug-16	0.077	-	0.0050	-	mg/kg dw	
2016	DS1-4	D\$1	grab	0	5	16-Aug-16	0.053	-	0.0050	-	mg/kg dw	
2016	NEM-1	NEM	grab	0	5	13-Aug-16	0.059	-	0.0050	-	mg/kg dw	
2016	NEM-2	NEM	grab	0	5	13-Aug-16	0.035	-	0.0050	-	mg/kg dw	
2016	NEM-3	NEM	grab	0	5	13-Aug-16	0.030	-	0.0050	-	mg/kg dw	
2016	NEM-4	NEM	grab	0	5	13-Aug-16	0.029	-	0.0050	-	mg/kg dw	
2016	NEM-5	A76	grab	0	5	13-Aug-16	0.029	-	0.0050	-	mg/kg dw	
2016	A76-2	A76	grab	0	5	15-Aug-10	0.041	-	0.0050	-	mg/kg dw	
2016	A76-3	A76	grab	0	5	15-Aug-16	0.056	-	0.0050	-	mg/kg dw	
2016	A76-4	A76	grab	0	5	15-Aug-16	0.047	-	0.0050	-	mg/kg dw	
2016	A76-5	A76	grab	0	5	15-Aug-16	0.039	-	0.0050	-	mg/kg dw	
2017	WTS-1	WTS	grab	0	5	12-Aug-17	0.089	-	0.0050	-	mg/kg dw	
2017	WTS-2 WTS-3	WTS	grab	0	5	12-Aug-17	0.053	-	0.0050	-	mg/kg dw	
2017	WTS-4	WTS	grab	0	5	12-Aug-17	0.066	-	0.0050	-	mg/kg dw	
2017	WTS-5	WTS	grab	0	5	12-Aug-17	0.057	-	0.0050	-	mg/kg dw	
2017	A20-1	A20	grab	0	5	16-Aug-17	0.055	-	0.0050	-	mg/kg dw	
2017	A20-2	A20	grab	0	5	16-Aug-17	0.055	-	0.0050	-	mg/kg dw	
2017	A20-3	A20	grab	0	5 E	16-Aug-17	0.044	-	0.0050	-	mg/kg dw	
2017	A20-4	A20	grab	0	5	16-Aug-17	0.059	-	0.0050		mg/kg dw	
2017	MAM-1	MAM	grab	0	5	17-Aug-17	0.085	-	0.0050	-	mg/kg dw	
2017	MAM-2	MAM	grab	0	5	17-Aug-17	0.088	-	0.0050	-	mg/kg dw	
2017	MAM-3	MAM	grab	0	5	17-Aug-17	0.082	-	0.0050	-	mg/kg dw	
2017	MAM-4	MAM	grab	0	5	17-Aug-17	0.10	-	0.0050	-	mg/kg dw	
2017	DS1-1	DS1	grab	0	5	17-Aug-17 18-Aug-17	0.090	-	0.0050		mg/kg dw	
2017	DS1-2	DS1	grab	0	5	18-Aug-17	0.12	-	0.0050	-	mg/kg dw	
2017	DS1-3	DS1	grab	0	5	18-Aug-17	0.13	-	0.0050	-	mg/kg dw	
2017	DS1-4	DS1	grab	0	5	18-Aug-17	0.12	-	0.0050	-	mg/kg dw	
2017	DS1-5	DS1	grab	0	5	18-Aug-17	0.12	-	0.0050	-	mg/kg dw	
2017	PDL-1 PDL-2	PDL	grab	0	5	24-Aug-17	0.014	-	0.0050	-	mg/kg dw	
2017	PDL-3	PDL	grab	0	5	24-Aug-17	0.020	-	0.0050	-	mg/kg dw	
2017	PDL-4	PDL	grab	0	5	24-Aug-17	0.012	-	0.0050	-	mg/kg dw	
2017	PDL-5	PDL	grab	0	5	24-Aug-17	0.013	-	0.0050	-	mg/kg dw	
2017	INUG-1	INUG	grab	0	5	25-Aug-17	0.032	-	0.0050	-	mg/kg dw	
2017	INUG-2	INUG	grab	0	5	25-Aug-17 25-Aug-17	0.024	-	0.0050	-	mg/kg dw	
2017	INUG-4	INUG	grab	0	5	25-Aug-17	0.032	-	0.0050	-	mg/kg dw	
2017	INUG-5	INUG	grab	0	5	25-Aug-17	0.035	-	0.0050	-	mg/kg dw	
2017	NEM-1	NEM	grab	0	5	15-Aug-17	0.046	-	0.0050	-	mg/kg dw	
2017	NEM-2	NEM	grab	0	5	15-Aug-17	0.059	-	0.0050	-	mg/kg dw	
2017	NEM-3	NEM	grab	0	5	15-Aug-17	0.061	-	0.0050	-	mg/kg dw	
2017	NEM-5	NEM	grab	0	5	15-Aug-17	0.069	-	0.0050	-	mg/kg dw	
2017	WTS-SC-1	WTS	core	0	1.5	15-Aug-17	0.069	0.0010	0.0050	0.00005	mg/kg dw	
2017	WTS-SC-5	WTS	core	0	1.5	15-Aug-17	0.096	0.0011	0.0050	0.00005	mg/kg dw	
2017	WTS-SC-9	WTS	core	0	1.5	15-Aug-17	0.081	0.0011	0.0050	0.00005	mg/kg dw	
2017	WTS-SC-1	WTS	core	0	1.5	15-Aug-17	0.073	-	0.0050	-	mg/kg dw	
2017	WTS-SC-2 WTS-SC-3	WTS	core	0	1.5	14-Aug-17	0.092	-	0.0050	-	mg/kg dw	
2017	WTS-SC-4	WTS	core	0	1.5	15-Aug-17	0.070	-	0.0050	-	mg/kg dw	
2017	WTS-SC-5	WTS	core	0	1.5	15-Aug-17	0.10	-	0.0050	-	mg/kg dw	
2017	WTS-SC-6	WTS	core	0	1.5	15-Aug-17	0.069	-	0.0050	-	mg/kg dw	
2017	WTS-SC-7	WTS	core	0	1.5	15-Aug-17	0.065	-	0.0050	-	mg/kg dw	
2017	WIS-SC-8	WTS	core	0	1.5	15-Aug-17	0.063	-	0.0050	-	mg/kg dw	
2017	WTS-SC-10	WTS	core	0	1.5	15-Aug-17	0.085	-	0.0050	-	mg/kg dw	
2017	NEM-SC-1	NEM	core	0	1.5	15-Aug-17	0.028	-	0.0050	-	mg/kg dw	
2017	NEM-SC-3	NEM	core	0	1.5	15-Aug-17	0.014	-	0.0050	-	mg/kg dw	
2017	NEM-SC-4	NEM	core	0	1.5	15-Aug-17	0.036	-	0.0050	-	mg/kg dw	
2017	NEM-SC-5	NÉM	core	0	1.5	15-Aug-17	0.031	-	0.0050	-	mg/kg dw	
2017	NEIVI-SC-D	NEM	core	0	1.5	15-Aug-17	0.019	-	0.0050	-	mg/kg dw	
2017	NEM-SC-8	NEM	core	0	1.5	15-Aug-17	0.017	-	0.0050	-	mg/kg dw	

Year	Sample ID	Lake	Method	Depth Start	Depth End	Date	THg	MeHg	THg Detection	MeHg Detection	Hg Units	Notes
2017	NEM CC O	NEM		(ciii)	(cm)	15 Aug 17	0.025		Limit	Limit	an a fluar alcu	
2017	NEM-SC-10	NEM	core	0	1.5	15-Aug-17 15-Aug-17	0.035	-	0.0050	-	mg/kg dw mg/kg dw	
2017	NEM-SC-2	NEM	core	0	1.5	15-Aug-17	0.028	-	0.0050	-	mg/kg dw	
2017	A20-SC-1	A20	core	0	1.5	16-Aug-17	0.036	-	0.0050	-	mg/kg dw	
2017	A20-SC-2	A20	core	0	1.5	16-Aug-17	0.058	-	0.0050	-	mg/kg dw	
2017	A20-SC-3 A20-SC-4	A20 A20	core	0	1.5	16-Aug-17	0.039	-	0.0050	-	mg/kg dw mg/kg dw	
2017	A20-SC-5	A20	core	0	1.5	16-Aug-17	0.047	-	0.0050	-	mg/kg dw	
2017	A20-SC-6	A20	core	0	1.5	16-Aug-17	0.046	-	0.0050	-	mg/kg dw	
2017	A20-SC-7	A20	core	0	1.5	16-Aug-17	0.043	-	0.0050	-	mg/kg dw	
2017	A20-SC-8	A20	core	0	1.5	16-Aug-17	0.041	-	0.0050	-	mg/kg dw	
2017	A20-SC-10	A20 A20	core	0	1.5	16-Aug-17	0.041	-	0.0050	-	mg/kg dw	
2017	MAM-SC-1	MAM	core	0	1.5	17-Aug-17	0.084	-	0.0050	-	mg/kg dw	
2017	MAM-SC-2	MAM	core	0	1.5	17-Aug-17	0.093	-	0.0050	-	mg/kg dw	
2017	MAM-SC-3	MAM	core	0	1.5	17-Aug-17	0.088	-	0.0050	-	mg/kg dw	
2017	MAM-SC-4	MAM	core	0	1.5	17-Aug-17 17-Aug-17	0.076	-	0.0050	-	mg/kg dw	
2017	MAM-SC-6	MAM	core	0	1.5	17-Aug-17	0.10	-	0.0050	-	mg/kg dw	
2017	MAM-SC-7	MAM	core	0	1.5	17-Aug-17	0.11	-	0.0050	-	mg/kg dw	
2017	MAM-SC-8	MAM	core	0	1.5	17-Aug-17	0.088	-	0.0050	-	mg/kg dw	
2017	MAM-SC-9 MAM-SC-10	MAM	core	0	1.5	17-Aug-17	0.080	-	0.0050	-	mg/kg dw	
2017	A76-SC-1	A76	core	0	1.5	17-Aug-17	0.067	-	0.0050	-	mg/kg dw	
2017	A76-SC-2	A76	core	0	1.5	18-Aug-17	0.043	-	0.0050	-	mg/kg dw	
2017	A76-SC-3	A76	core	0	1.5	18-Aug-17	0.062	-	0.0050	-	mg/kg dw	
2017	A/6-SC-4	A76	core	0	1.5	18-Aug-17	0.063	-	0.0050	-	mg/kg dw	
2017	A76-SC-5	A76	core	0	1.5	18-Aug-17	0.039	-	0.0050	-	mg/kg dw	
2017	A76-SC-7	A76	core	0	1.5	18-Aug-17	0.055	-	0.0050	-	mg/kg dw	
2017	A76-SC-8	A76	core	0	1.5	18-Aug-17	0.049	-	0.0050	-	mg/kg dw	
2017	A76-SC-9	A76	core	0	1.5	18-Aug-17	0.038	-	0.0050	-	mg/kg dw	
2017	A/6-SC-10 DS1-SC-1	A76 DS1	core	0	1.5	18-Aug-17 18-Aug-17	0.078	-	0.0050	-	mg/kg dw	
2017	DS1-SC-2	DS1	core	0	1.5	18-Aug-17	0.073	-	0.0050	-	mg/kg dw	
2017	DS1-SC-3	DS1	core	0	1.5	18-Aug-17	0.061	-	0.0050	-	mg/kg dw	
2017	DS1-SC-4	DS1	core	0	1.5	18-Aug-17	0.071	-	0.0050	-	mg/kg dw	
2017	DS1-SC-5	DS1	core	0	1.5	18-Aug-17	0.071	-	0.0050	-	mg/kg dw	
2017	DS1-SC-6 DS1-SC-7	DS1 DS1	core	0	1.5	18-Aug-17 18-Aug-17	0.096	-	0.0050	-	mg/kg dw mg/kg dw	
2017	DS1-SC-8	DS1	core	0	1.5	18-Aug-17	0.069	-	0.0050	-	mg/kg dw	
2017	DS1-SC-9	DS1	core	0	1.5	18-Aug-17	0.078	-	0.0050	-	mg/kg dw	
2017	DS1-SC-10	DS1	core	0	1.5	18-Aug-17	0.066	-	0.0050	-	mg/kg dw	
2017	PDL-SC-1 PDL-SC-2	PDL	core	0	1.5	24-Aug-17 24-Aug-17	0.016	-	0.0050	-	mg/kg dw mg/kg dw	
2017	PDL-SC-3	PDL	core	0	1.5	24-Aug-17	0.025	-	0.0050	-	mg/kg dw	
2017	PDL-SC-4	PDL	core	0	1.5	24-Aug-17	0.018	-	0.0050	-	mg/kg dw	
2017	PDL-SC-5	PDL	core	0	1.5	24-Aug-17	0.017	-	0.0050	-	mg/kg dw	
2017	PDL-SC-6	PDL	core	0	1.5	24-Aug-17 24-Aug-17	0.014	-	0.0050	-	mg/kg dw	
2017	PDL-SC-7	PDL	core	0	1.5	24-Aug-17	0.018	-	0.0050	-	mg/kg dw	
2017	PDL-SC-8	PDL	core	0	1.5	24-Aug-17	0.025	-	0.0050	-	mg/kg dw	
2017	PDL-SC-10	INUG	core	0	1.5	24-Aug-17	0.017	-	0.0050	-	mg/kg dw	
2017	INUG-SC-2	INUG	core	0	1.5	25-Aug-17	0.033	-	0.0050	-	mg/kg dw	
2017	INUG-SC-3	INUG	core	0	1.5	25-Aug-17	0.035	-	0.0050	-	mg/kg dw	
2017	INUG-SC-4	INUG	core	0	1.5	25-Aug-17	0.038	-	0.0050	-	mg/kg dw	
2017	INUG-SC-6	INUG	core	0	1.5	25-Aug-17 25-Aug-17	0.059	-	0.0050	-	mg/kg dw	
2017	INUG-SC-7	INUG	core	0	1.5	25-Aug-17	0.045	-	0.0050	-	mg/kg dw	
2017	INUG-SC-8	INUG	core	0	1.5	25-Aug-17	0.048	-	0.0050	-	mg/kg dw	
2017	INUG-SC-9	INUG	core	0	1.5	25-Aug-17	0.034	-	0.0050	-	mg/kg dw	
2017	A76-1	A76	grab	0	1.5	25-Aug-17	0.035	-	0.0050	-	mg/kg dw	
2017	A76-2	A76	grab	0	5	17-Aug-17	0.040	-	0.0050	-	mg/kg dw	
2017	A76-3	A76	grab	0	5	17-Aug-17	0.059	-	0.0050	-	mg/kg dw	
2017	A76-4	A76	grab	0	5	17-Aug-17	0.061	-	0.0050	-	mg/kg dw	
2017	A/6-5 WTS-1	A76 WTS	grab	0	5	17-Aug-17 13-Aug-18	0.039	-	0.0050	-	mg/kg dw	
2018	WTS-2	WTS	grab	0	5	13-Aug-18	0.056	-	0.0050	-	mg/kg dw	
2018	WTS-3	WTS	grab	0	5	13-Aug-18	0.038	-	0.0050	-	mg/kg dw	
2018	WTS-4	WTS	grab	0	5	13-Aug-18	0.070	-	0.0050	-	mg/kg dw	
2018	INUG-1	INUG	grab	0	5	13-Aug-18 13-Aug-18	0.033	-	0.0050	-	mg/kg dw	
2018	INUG-2	INUG	grab	0	5	13-Aug-18	0.026	-	0.0050	-	mg/kg dw	
2018	INUG-3	INUG	grab	0	5	13-Aug-18	0.025	-	0.0050	-	mg/kg dw	
2018	INUG-4	INUG	grab	0	5	13-Aug-18	0.023	-	0.0050	-	mg/kg dw	
2018	INUG-5 PDI-1	PDI	grab	0	5	13-Aug-18 13-Aug-18	0.0099	-	0.0050	-	mg/kg dw	
2018	PDL-2	PDL	grab	0	5	13-Aug-18	0.011	-	0.0050	-	mg/kg dw	
2018	PDL-3	PDL	grab	0	5	13-Aug-18	0.014	-	0.0050	-	mg/kg dw	
2018	PDL-4	PDL	grab	0	5	13-Aug-18	0.016	-	0.0050	-	mg/kg dw	
2018	MAM-1 MAM-2	MAM	grab	0	5	16-Aug-18	0.019	-	0.0050	-	mg/kg dw	
2018	MAM-3	MAM	grab	0	5	16-Aug-18	0.087	-	0.0050	-	mg/kg dw	
2018	MAM-4	MAM	grab	0	5	16-Aug-18	0.10	-	0.0050	-	mg/kg dw	
2018	MAM-5	MAM	grab	0	5	16-Aug-18	0.086	-	0.0050	-	mg/kg dw	
2018	A20-1	A20	grab	0	5	18-Aug-18	0.046	-	0.0050	-	mg/kg dw	
2018	A20-2 A20-3	A20 A20	grab	0	5	18-Aug-18 18-Aug-18	0.043	-	0.0050	-	mg/kg dw	
2018	A20-4	A20	grab	0	5	18-Aug-18	0.051	-	0.0050	-	mg/kg dw	
2018	A20-5	A20	grab	0	5	18-Aug-18	0.042	-	0.0050	-	mg/kg dw	
2018	DS1-1	DS1	grab	0	5	19-Aug-18	0.056	-	0.0050	-	mg/kg dw	
2018	DS1-2 DS1-3	DS1 DS1	grab	0	5	19-Aug-18 19-Aug-18	0.050	-	0.0050	-	mg/kg dw	

Year	Sample ID	Lake	Method	Depth Start (cm)	Depth End (cm)	Date	THg	MeHg	THg Detection	MeHg Detection	Hg Units	Notes
2018	DS1-4	DS1	grab	0	5	19-Aug-18	0.051		0.0050	Limit -	mg/kg dw	
2018	DS1-5	DS1	grab	0	5	19-Aug-18	0.050	-	0.0050	-	mg/kg dw	
2018	LK8-1	LK8	grab	0	5	17-Aug-18	0.015	-	0.0050	-	mg/kg dw	
2018	LK8-2	LK8	grab	0	5	17-Aug-18	0.0093	-	0.0050	-	mg/kg dw	
2018	LK8-3	LK8	grab	0	5	17-Aug-18 17-Aug-18	0.0070	-	0.0050	-	mg/kg dw	
2018	LK8-5	LK8	grab	0	5	17-Aug-18	0.0067	-	0.0050	-	mg/kg dw	
2018	NEM-1	NEM	grab	0	5	17-Aug-18	0.019	-	0.0050	-	mg/kg dw	
2018	NEM-2	NEM	grab	0	5	17-Aug-18	0.012	-	0.0050	-	mg/kg dw	
2018	NEM-3	NEM	grab	0	5	17-Aug-18	0.012	-	0.0050	-	mg/kg dw	
2018	NEM-5	NEM	grab	0	5	17-Aug-18	0.018	-	0.0050	-	mg/kg dw	
2018	WTS-1	WTS	core	0	1.5	18-Aug-18	0.025	0.0013	0.0050	0.00005	mg/kg dw	
2018	WTS-1	WTS	core	5	6	18-Aug-18	0.052	0.00030	0.0050	0.00005	mg/kg dw	
2018	WTS-1	WTS	core	10	11	18-Aug-18	0.042	0.0014	0.0050	0.00005	mg/kg dw	
2018	WTS-2	WTS	core	0	1.5	18-Aug-18	0.070	0.00036	0.0050	0.00005	mg/kg dw	
2018	WTS-2	WTS	core	5	6	18-Aug-18	0.052	0.00029	0.0050	0.00005	mg/kg dw	
2018	WTS-3	WTS	core	0	1.5	18-Aug-18	0.045	0.00066	0.0050	0.00005	mg/kg dw	
2018	WTS-3	WTS	core	5	6	18-Aug-18	0.045	0.00020	0.0050	0.00005	mg/kg dw	
2018	WTS-3	WTS	core	10	11	18-Aug-18	0.041	0.00030	0.0050	0.00005	mg/kg dw	
2018	LK8-SC-1	LK8	core	0	1.5	17-Aug-18	0.014	-	0.0050	-	mg/kg dw	
2018	LK8-SC-3	LK8	core	0	1.5	17-Aug-18	0.013	-	0.0050	-	mg/kg dw	
2018	LK8-SC-4	LK8	core	0	1.5	17-Aug-18	0.022	-	0.0050	-	mg/kg dw	
2018	LK8-SC-5	LK8	core	0	1.5	17-Aug-18	0.014	-	0.0050	-	mg/kg dw	
2018	LK8-SC-6	LK8	core	0	1.5	17-Aug-18	0.011	-	0.0050	-	mg/kg dw	
2018	LK8-SC-7	LK8	core	0	1.5	17-Aug-18 17-Aug-18	0.016	-	0.0050	-	mg/kg dw	
2018	A76-1	A76	grab	0	5	18-Aug-18	0.047	-	0.0050	-	mg/kg dw	
2018	A76-2	A76	grab	0	5	18-Aug-18	0.051	-	0.0050	-	mg/kg dw	
2018	A76-3	A76	grab	0	5	18-Aug-18	0.047	-	0.0050	-	mg/kg dw	
2018	A76-4	A76	grab	0	5	18-Aug-18	0.039	-	0.0050	-	mg/kg dw	
2018	A/6-5 D1-1	A76 D1	grab	0	5	18-Aug-18 15-Aug-18	0.051	-	0.0050	-	mg/kg dw	
2018	D1-1 D1-2	D1	grab	0	5	15-Aug-18	0.017	-	0.0050	-	mg/kg dw	
2018	D1-3	D1	grab	0	5	15-Aug-18	0.030	-	0.0050	-	mg/kg dw	
2018	D1-4	D1	grab	0	5	15-Aug-18	0.031	-	0.0050	-	mg/kg dw	
2018	D1-5	D1	grab	0	5	15-Aug-18	0.030	-	0.0050	-	mg/kg dw	
2018	LK1-SC-1	D1	core	0	1.5	14-Aug-18 14-Aug-18	0.019	-	0.0050	-	mg/kg dw	
2018	LK1-SC-3	D1	core	0	1.5	14-Aug-18	0.041	-	0.0050	-	mg/kg dw	
2018	LK1-SC-4	D1	core	0	1.5	15-Aug-18	0.045	-	0.0050	-	mg/kg dw	
2018	LK1-SC-5	D1	core	0	1.5	15-Aug-18	0.036	-	0.0050	-	mg/kg dw	
2018	LK1-SC-6	D1	core	0	1.5	15-Aug-18	0.044	-	0.0050	-	mg/kg dw	
2018	LK1-SC-7	D1	core	0	1.5	15-Aug-18	0.044	-	0.0050	-	mg/kg dw	
2018	LK1-SC-9	D1	core	0	1.5	15-Aug-18	0.067	-	0.0050	-	mg/kg dw	
2018	LK1-SC-10	D1	core	0	1.5	15-Aug-18	0.036	-	0.0050	-	mg/kg dw	
2019	WTS-1	WTS	grab	0	5	18-Aug-19	< 0.050	0.00023	0.050	0.00005	mg/kg dw	
2019	WTS-3	WTS	grab	0	5	18-Aug-19	0.051	0.00048	0.050	0.00005	mg/kg dw	
2019	WTS-4	WTS	grab	0	5	18-Aug-19	0.063	0.00072	0.050	0.00005	mg/kg dw	
2019	WTS-5	WTS	grab	0	5	18-Aug-19	<0.050	< 0.000050	0.050	0.00005	mg/kg dw	
2019	INUG-1	INUG	grab	0	5	15-Aug-19	<0.050	0.00014	0.050	0.00005	mg/kg dw	
2019	INUG-2	INUG	grab	0	5	15-Aug-19	<0.050	0.00012	0.050	0.00005	mg/kg dw	
2019	INUG-4	INUG	grab	0	5	15-Aug-19	<0.050	0.00015	0.050	0.00005	mg/kg dw	
2019	INUG-5	INUG	grab	0	5	15-Aug-19	< 0.050	0.00030	0.050	0.00005	mg/kg dw	
2019	PDL-1	PDL	grab	0	5	14-Aug-19	<0.050	0.00013	0.050	0.00005	mg/kg dw	
2019	PDL-2	PDL	grab	0	5	14-Aug-19	<0.050	0.00017	0.050	0.00005	mg/kg dw	
2019	PDL-3 PDI-4	PDL	grab	0	5	14-AUG-19 14-Aug-19	<0.050	<0.00011	0.050	0.00005	mg/kg dw	
2019	PDL-5	PDL	grab	0	5	14-Aug-19	<0.050	0.00007	0.050	0.00005	mg/kg dw	
2019	MAM-1	MAM	grab	0	5	19-Aug-19	0.081	0.00064	0.050	0.00005	mg/kg dw	
2019	MAM-2	MAM	grab	0	5	19-Aug-19	0.067	0.00066	0.050	0.00005	mg/kg dw	
2019	MAM-3	MAM	grab	0	5	19-Aug-19	0.078	0.0010	0.050	0.00005	mg/kg dw	
2019	MAM-5	MAM	grab	0	5	19-Aug-19	0.008	0.0013	0.050	0.00005	mg/kg dw	
2019	A20-1	A20	grab	0	5	16-Aug-19	<0.050	0.00030	0.050	0.00005	mg/kg dw	
2019	A20-2	A20	grab	0	5	16-Aug-19	<0.050	0.00011	0.050	0.00005	mg/kg dw	
2019	A20-3	A20	grab	0	5	16-Aug-19	<0.050	0.00046	0.050	0.00005	mg/kg dw	
2019	A20-4 A20-5	A20	grab	0	5	16-Aug-19	<0.050	0.00048	0.050	0.00005	mg/kg dw	
2019	DS1-1	DS1	grab	0	5	17-Aug-19	0.053	0.00008	0.050	0.00005	mg/kg dw	
2019	DS1-2	DS1	grab	0	5	17-Aug-19	<0.050	0.00016	0.050	0.00005	mg/kg dw	
2019	DS1-3	DS1	grab	0	5	17-Aug-19	0.064	0.00028	0.050	0.00005	mg/kg dw	
2019	DS1-4	DS1	grab	0	5	17-Aug-19	<0.050	<0.000050	0.050	0.00005	mg/kg dw	
2019	LK8-1	LK8	grab	0	5	16-Aug-19	<0.050	-	0.050	-	mg/kg dw	
2019	LK8-2	LK8	grab	0	5	17-Aug-19	<0.050	-	0.050	-	mg/kg dw	
2019	LK8-3	LK8	grab	0	5	17-Aug-19	<0.050	-	0.050	-	mg/kg dw	
2019	LK8-4	LK8	grab	0	5	17-Aug-19	<0.050	-	0.050	-	mg/kg dw	
2019	LK8-5 A76-1	LK8 A76	grab	0	5	17-Aug-19 15-Aug-19	<0.050	-	0.050	-	mg/kg dw	
2019	A76-2	A76	grab	0	5	15-Aug-19	<0.050	-	0.050	-	mg/kg dw	
2019	A76-3	A76	grab	0	5	15-Aug-19	<0.050	-	0.050	-	mg/kg dw	
2019	A76-4	A76	grab	0	5	15-Aug-19	<0.050	-	0.050	-	mg/kg dw	
2019	A76-5	A76	grab	0	5	15-Aug-19	<0.050	-	0.050	-	mg/kg dw	
2019	NEIVI-1 NEM-2	NEM	grab	0	5	10-Aug-19 18-Aug-19	<0.050	-	0.050	-	mg/kg dw	
2019	NEM-3	NEM	grab	0	5	18-Aug-19	<0.050	-	0.050	-	mg/kg dw	
2019	NEM-4	NEM	grab	0	5	18-Aug-19	<0.050	-	0.050	-	mg/kg dw	
2019	NEM-5	NEM	grab	0	5	18-Aug-19	< 0.050	-	0.050	-	mg/kg dw	
2019	LK1-1	U1	grab	0	5	17-Aug-19	<0.050	-	0.050	-	mg/kg dw	

	Complet ID	Laba	Marsh and	Depth Start	Depth End	Data	711-		THg	MeHg	lin linita	N
Year	Sample ID	Lake	Method	(cm)	(cm)	Date	THg	менg	Limit	Limit	Hg Units	Notes
2019	LK1-2	D1	grab	0	5	17-Aug-19	<0.050	-	0.050	-	mg/kg dw	
2019	LK1-3	D1	grab	0	5	17-Aug-19	<0.050	-	0.050	-	mg/kg dw	
2019	LK1-4	D1	grab	0	5	17-Aug-19	<0.050	-	0.050	-	mg/kg dw	
2019	LK1-5	D1	grab	0	5	17-Aug-19	<0.050	-	0.050	-	mg/kg dw	
2020	PDL-SC-2	PDL	core	0	1.5	22-Aug-20	0.012	0.00000	0.0050	0.00005	mg/kg dw	
2020	PDL-SC-3	PDL	core	0	1.5	22-Aug-20	0.011	0.00006	0.0050	0.00005	mg/kg dw	
2020	PDL-SC-4	PDL	core	0	1.5	22-Aug-20	0.016	0.00048	0.0050	0.00005	mg/kg dw	
2020	PDL-SC-5	PDL	core	0	1.5	22-Aug-20	0.0090	<0.00005	0.0050	0.00005	mg/kg dw	
2020	PDL-SC-6	PDL	core	0	1.5	22-Aug-20	0.020	0.00014	0.0050	0.00005	mg/kg dw	
2020	PDL-SC-7	PDL	core	0	1.5	22-Aug-20	0.010	0.00006	0.0050	0.00005	mg/kg dw	
2020	PDL-SC-8 PDL-SC-9	PDL	core	0	1.5	22-Aug-20 22-Aug-20	0.0011	<0.00005	0.0050	0.00005	mg/kg dw	
2020	PDL-SC-10	PDL	core	0	1.5	22-Aug-20	0.014	0.00015	0.0050	0.00005	mg/kg dw mg/kg dw	
2020	INUG-SC-1	INUG	core	0	1.5	21-Aug-20	0.031	0.00012	0.0050	0.00005	mg/kg dw	
2020	INUG-SC-2	INUG	core	0	1.5	21-Aug-20	0.023	0.00008	0.0050	0.00005	mg/kg dw	
2020	INUG-SC-3	INUG	core	0	1.5	21-Aug-20	0.026	0.00018	0.0050	0.00005	mg/kg dw	
2020	INUG-SC-4	INUG	core	0	1.5	21-Aug-20	0.028	0.00013	0.0050	0.00005	mg/kg dw	
2020	INUG-SC-6	INUG	core	0	1.5	21-Aug-20 21-Aug-20	0.027	0.00010	0.0050	0.00005	mg/kg dw	
2020	INUG-SC-7	INUG	core	0	1.5	21-Aug-20	0.032	0.00022	0.0050	0.00005	mg/kg dw	
2020	INUG-SC-8	INUG	core	0	1.5	21-Aug-20	0.031	0.00013	0.0050	0.00005	mg/kg dw	
2020	INUG-SC-9	INUG	core	0	1.5	21-Aug-20	0.031	0.00015	0.0050	0.00005	mg/kg dw	
2020	INUG-SC-10	INUG	core	0	1.5	21-Aug-20	0.028	0.00008	0.0050	0.00005	mg/kg dw	
2020	LK8-SC-1	LK8	core	0	1.5	28-Aug-20	0.0058	0.00031	0.0050	0.00005	mg/kg dw	
2020	LK8-SC-3	LK8	core	0	1.5	28-Aug-20	0.011	0.00017	0.0050	0.00005	mg/kg dw	
2020	LK8-SC-4	LK8	core	0	1.5	28-Aug-20	0.015	0.00008	0.0050	0.00005	mg/kg dw	
2020	LK8-SC-5	LK8	core	0	1.5	28-Aug-20	0.017	0.00036	0.0050	0.00005	mg/kg dw	
2020	LK8-SC-6	LK8	core	0	1.5	28-Aug-20	0.0070	0.00006	0.0050	0.00005	mg/kg dw	
2020	LK8-SC-7	LK8	core	0	1.5	28-Aug-20	0.0092	0.00009	0.0050	0.00005	mg/kg dw	
2020	LK8-SC-0	LK8	core	0	1.5	28-Aug-20 28-Aug-20	0.012	0.00010	0.0050	0.00005	mg/kg dw	
2020	LK8-SC-10	LK8	core	0	1.5	28-Aug-20	0.011	< 0.00015	0.0050	0.00005	mg/kg dw	
2020	B3-SC-1	B3	core	0	1.5	22-Aug-20	0.034	0.00012	0.0050	0.00005	mg/kg dw	
2020	B3-SC-2	B3	core	0	1.5	30-Aug-20	0.043	0.00015	0.0050	0.00005	mg/kg dw	
2020	B3-SC-3	B3	core	0	1.5	30-Aug-20	0.032	< 0.000102	0.0050	0.00005	mg/kg dw	
2020	B3-SC-4	B3	core	0	1.5	30-Aug-20	0.029	0.00012	0.0050	0.00005	mg/kg dw	
2020	B3-SC-5	B3	core	0	1.5	30-Aug-20	0.032	0.00011	0.0050	0.00005	mg/kg dw	
2020	LK1-SC-1	D1	core	0	1.5	19-Aug-20	0.027	-	0.0050	-	mg/kg dw	
2020	LK1-SC-3	D1	core	0	1.5	19-Aug-20	0.021	-	0.0050	-	mg/kg dw	
2020	LK1-SC-4	D1	core	0	1.5	19-Aug-20	0.022	-	0.0050	-	mg/kg dw	
2020	LK1-SC-5	D1	core	0	1.5	19-Aug-20	0.025	-	0.0050	-	mg/kg dw	
2020	LK1-SC-6	D1	core	0	1.5	19-Aug-20	0.024	-	0.0050	-	mg/kg dw	
2020	LK1-SC-7	D1	core	0	1.5	19-Aug-20	0.028	-	0.0050	-	mg/kg dw	
2020	LK1-SC-8	D1	core	0	1.5	19-Aug-20	0.029	-	0.0050	-	mg/kg dw	
2020	LK1-SC-10	D1	core	0	1.5	19-Aug-20	0.015	-	0.0050	-	mg/kg dw	
2020	DS1-SC-1	DS1	core	0	1.5	21-Aug-20	0.032	0.00009	0.0050	0.00005	mg/kg dw	
2020	DS1-SC-2	DS1	core	0	1.5	21-Aug-20	0.030	0.00010	0.0050	0.00005	mg/kg dw	
2020	DS1-SC-3	DS1	core	0	1.5	21-Aug-20	0.039	< 0.00005	0.0050	0.00005	mg/kg dw	
2020	DS1-SC-4	DS1	core	0	1.5	21-Aug-20	0.038	<0.00005	0.0050	0.00005	mg/kg dw	
2020	DS1-SC-6	D31 DS1	core	0	1.5	21-Aug-20 21-Aug-20	0.043	0.00014	0.0050	0.00005	mg/kg dw	
2020	DS1-SC-7	DS1	core	0	1.5	21-Aug-20	0.046	0.00007	0.0050	0.00005	mg/kg dw	
2020	DS1-SC-8	DS1	core	0	1.5	21-Aug-20	0.042	<0.00005	0.0050	0.00005	mg/kg dw	
2020	DS1-SC-9	DS1	core	0	1.5	21-Aug-20	0.053	<0.00005	0.0050	0.00005	mg/kg dw	
2020	DS1-SC-10	DS1	core	0	1.5	21-Aug-20	0.074	0.00018	0.0050	0.00005	mg/kg dw	
2020	A20-SC-1	A20	core	0	1.5	21-Aug-20	0.040	0.00022	0.0050	0.00005	mg/kg dw	
2020	A20-3C-2 A20-SC-3	A20	core	0	1.5	21-Aug-20 21-Aug-20	0.041	0.00013	0.0050	0.00005	mg/kg dw	
2020	A20-SC-4	A20	core	0	1.5	21-Aug-20	0.045	0.00026	0.0050	0.00005	mg/kg dw	
2020	A20-SC-5	A20	core	0	1.5	21-Aug-20	0.049	0.00049	0.0050	0.00005	mg/kg dw	
2020	A20-SC-6	A20	core	0	1.5	21-Aug-20	0.044	0.00037	0.0050	0.00005	mg/kg dw	
2020	A20-SC-7	A20	core	0	1.5	21-Aug-20	0.031	0.00006	0.0050	0.00005	mg/kg dw	
2020	A20-5C-8	A2U A20	core	0	1.5	21-Aug-20	0.031	0.00007	0.0050	0.00005	mg/kg dw	
2020	A20-SC-10	A20	core	0	1.5	21-Aug-20 21-Aug-20	0.050	0.00020	0.0050	0.00005	mg/kg dw	
2020	NEM-SC-1	NEM	core	0	1.5	21-Aug-20	0.031	-	0.0050	-	mg/kg dw	
2020	NEM-SC-2	NEM	core	0	1.5	21-Aug-20	0.028	-	0.0050	-	mg/kg dw	
2020	NEM-SC-3	NEM	core	0	1.5	21-Aug-20	0.036	-	0.0050	-	mg/kg dw	
2020	NEM-SC-4	NEM	core	0	1.5	21-Aug-20	0.030	-	0.0050	-	mg/kg dw	
2020	NEIVI-SC-S	NEM	core	0	1.5	21-AUg-20 21-Aug-20	0.025	-	0.0050	-	mg/kg dw	
2020	NEM-SC-7	NEM	core	0	1.5	21-Aug-20	0.026	-	0.0050	-	mg/kg dw	
2020	NEM-SC-8	NEM	core	0	1.5	21-Aug-20	0.023	-	0.0050	-	mg/kg dw	
2020	NEM-SC-9	NEM	core	0	1.5	21-Aug-20	0.023	-	0.0050	-	mg/kg dw	
2020	NEM-SC-10	NEM	core	0	1.5	21-Aug-20	0.018	-	0.0050	-	mg/kg dw	
2020	WTS-SC-1	WTS	core	0	1.5	21-Aug-20	0.063	0.00013	0.0050	0.00005	mg/kg dw	
2020	WTS-SC-2	WTS	core	0	1.5	21-Aug-20	0.058	0.00033	0.0050	0.00005	mg/kg dw	
2020	WTS-SC-4	WTS	core	0	1.5	21-AUg-20 21-Aug-20	0.049	0.00020	0.0050	0.00005	mg/kg dw	
2020	WTS-SC-5	WTS	core	0	1.5	21-Aug-20	0.058	0.0015	0.0050	0.00005	mg/kg dw	
2020	WTS-SC-6	WTS	core	0	1.5	21-Aug-20	0.067	0.0015	0.0050	0.00005	mg/kg dw	
2020	WTS-SC-7	WTS	core	0	1.5	21-Aug-20	0.074	0.00080	0.0050	0.00005	mg/kg dw	
2020	WTS-SC-8	WTS	core	0	1.5	21-Aug-20	0.068	0.00091	0.0050	0.00005	mg/kg dw	
2020	WTS-SC-9	WTS	core	0	1.5	21-Aug-20	0.053	0.00069	0.0050	0.00005	mg/kg dw	
2020	W15-SC-10 MAM-SC 1	WTS MANA	core	0	1.5	21-Aug-20	0.061	0.00054	0.0050	0.00005	mg/kg dw	
2020	MAM-SC-2	MAM	core	0	1.5	21-Aug-20 21-Aug-20	0.089	0.00080	0.0050	0.00005	mg/kg dw	
2020	MAM-SC-3	MAM	core	0	1.5	21-Aug-20	0.084	0.00025	0.0050	0.00005	mg/kg dw	
2020	MAM-SC-4	MAM	core	0	1.5	21-Aug-20	0.088	0.00067	0.0050	0.00005	mg/kg dw	
2020	MAM-SC-5	MAM	core	0	1.5	21-Aug-20	0.080	0.00053	0.0050	0.00005	mg/kg dw	
2020	MAM-SC-6	MAM	core	0	1.5	21-Aug-20	0.091	0.00063	0.0050	0.00005	mg/kg dw	

dry weight;

Notes: dv

Not analy

Table B1-1. Total and methylmercury concentrations in sediment samples collected for the Mercury Monitoring Program since 2016.

Depth Start Depth End

Year Sample ID Lake Method Date THg MeHg Detectio Detect Hg Units Notes (cm) (cm) Limit Limit MAM-SC-7 MAM 0.080 0.00053 2020 21-Aug-20 mg/kg dw core 1.5 0.0050 0.00005 2020 MAM-SC-8 MAM core 1.5 21-Aug-20 0.092 0.00063 0.0050 0.00005 2020 MAM-SC-9 MAM 21-Aug-20 0.083 0.00034 0.0050 0.0000 core mg/kg dv 2020 MAM-SC-10 MAM core 1.5 21-Aug-20 0.091 0.00037 0.0050 0.00005 mg/kg dw 0 0.0050 0.00005 2020 2020 A76-SC-1 A76 core 21-Aug-20 0.055 0.00031 mg/kg dw 0.0050 A76-SC-2 A76 core 1.5 21-Aug-20 0.045 0.00035 0.0000 mg/kg dw 2020 2020 A76-SC-3 A76 core core 1.5 1.5 21-Aug-20 0.049 0.00041 0.0050 0.00005 0 mg/kg dw A76-SC-4 A76 21-Aug-20 0.035 0.0001 mg/kg dv 2020 A76-SC-5 A76 core 1.5 21-Aug-20 0.034 0.00018 0.0050 0.00005 mg/kg dw 0.034 2020 A76-SC-6 A76 0.00025 core 21-Aug-20 0.0050 0.00005 mg/kg dw 2020 A76-SC-7 A76 core 1.5 21-Aug-20 0.044 0.00020 0.0050 0.00005 mg/kg dw 0 21-Aug-20 2020 A76-SC-8 A76 core ٥ 1.5 0.043 0.00023 0.0050 0.00005 ng/kg dw 2020 A76-SC-9 A76 21-Aug-20 0.039 0.00012 0.0050 0.00005 core mg/kg dw 2020 A76-SC-10 A76 core 1.5 21-Aug-20 0.039 0.00023 0.0050 0.00005 mg/kg dw 0.045 2021 WTS WTS-1 grab 05-Aug-21 0.0012 0.0050 0.00005 mg/kg dw 2021 WTS-2 WTS grab 0 5 05-Aug-21 0.043 0.00064 0.0050 0.00005 mg/kg dw 2021 WTS-3 WTS 05-Aug-21 0.064 0.00069 0.0050 0.00005 grab 0 mg/kg dw 2021 WTS-4 WTS grab 0 05-Aug-21 0.074 0.00063 0.0050 0.00005 mg/kg dw 5 2021 WTS-5 WTS grab 0 05-Aug-21 0.061 0.00070 0.0050 0.00005 mg/kg dw 2021 2021 A76-1 A76 07-Aug-21 0.063 0.00059 0.0050 0.00010 grab mg/kg dw A76-2 A76 grab 07-Aug-21 0.035 0.00038 0.0050 0.00005 mg/kg dw 2021 2021 A76-3 A76-4 A76 grab 07-Aug-21 0.048 0.00052 0.0050 0.00005 mg/kg dw 07-Aug-21 A76 0.053 0.00045 0.0050 0.00010 grab mg/kg dw 2021 A76-5 A76 grab 07-Aug-21 0.048 0.00048 0.0050 0.00010 mg/kg dw 0 DUP-1 2021 DUP-1 grab 06-Aug-21 0.045 0.0011 0.0050 0.0000 mg/kg dw 2021 DUP-3 DUP-3 grab 06-Aug-21 0.066 0.00040 0.0050 0.00010 mg/kg dw 2022 2022 INUG-1 INUG 14-Aug-22 0.031 0.00047 0.0050 0.00005 ng/kg dw Moisture, TOC and PSA not calculated due to high moisture content grab 0 INUG-2 mg/kg dw Moisture, TOC and PSA not calculated due to high moisture content INUG 14-Aug-22 0.028 0.00008 0.0050 0.00005 grab 0 mg/kg dw Moisture, TOC and PSA not calculated due to high moisture content 2022 INUG-3 INUG grab 14-Aug-22 0.024 < 0.00005 0.050 0.00005 0 2022 INUG-4 14-Aug-22 mg/kg dw Moisture, TOC and PSA not calculated due to high moisture content INUG 0.030 0.00010 0.0050 0.0000 grab 2022 INUG-5 INUG grab 0 5 14-Aug-22 0.026 0.00007 0.0050 0.00005 mg/kg dw Moisture, TOC and PSA not calculated due to high moisture content mg/kg dw Moisture, TOC and PSA not calculated due to high moisture content mg/kg dw Moisture, TOC and PSA not calculated due to high moisture content 2022 PDL-1 0.017 0.00015 0.0050 PDL grab 15-Aug-22 0.00005 PDL-2 0.0050 2022 PDI grab 15-Aug-22 0.017 0.00021 0.00005 2022 2022 PDI-3 PDI grab 15-Aug-22 0.018 0.00006 0.0050 0.00005 mg/kg dw Moisture, TOC and PSA not calculated due to high moisture content PDL 15-Aug-22 mg/kg dw Moisture, TOC and PSA not calculated due to high moisture content PDL-4 0.013 0.00008 0.0050 grab 0.00005 2022 PDL-5 PDL grab 15-Aug-22 0.010 0.00005 0.0050 0.00005 mg/kg dw Moisture, TOC and PSA not calculated due to high moisture content 2022 MAM-MAM 0.078 0.016 0.0050 0 15-Aug-22 0.00005 grab mg/kg dw 2022 MAM-2 MAM grab 15-Aug-22 0.072 0.0080 0.0050 0.00005 mg/kg dw 0 2022 MAM-3 MAM 15-Aug-22 0.071 0.012 0.0050 0.00005 grab mg/kg dw 2022 MAM-4 MAM 0.0050 15-Aug-22 0.063 0.00005 0.0039 grab mg/kg dw 2022 MAM-5 MAM grab 15-Aug-22 0.078 0.0032 0.0050 0.00005 mg/kg dw 2022 A20-1 A20 17-Aug-22 0.050 0.0020 0.0050 0.00005 grab mg/kg dw 2022 A20-2 A20 grab 0 17-Aug-22 0.039 0.00074 0.0050 0.00005 mg/kg dw 2022 A20-3 A20 grab 17-Aug-22 0.051 0.0041 0.0050 0.00005 mg/kg dw 2022 A20-4 A20 grab 17-Aug-22 0.042 0.0014 0.0050 0.00005 mg/kg dw 0 grab grab 2022 A20-5 A20 17-Aug-22 0.048 0.0039 0.0050 0.00005 mg/kg dw 2022 DS1-1 16-Aug-22 0.060 <0.00005 0.050 0.00005 mg/kg dw 2022 DS1-2 DS1 grab 0 16-Aug-22 0.068 < 0.00005 0.050 0.00005 mg/kg dw 2022 2022 16-Aug-22 0.00005 DS1-3 0.063 0.0018 0.0050 mg/kg dw DS1 grab 0 DS1-4 DS1 16-Aug-22 0.067 0.00008 0.0050 grab 0.00005 mg/kg dw 2022 2022 DS1-5 DS1 grab 16-Aug-22 0.059 < 0.00005 0.0050 0.00005 mg/kg dw 16-Aug-22 A76-3 A76 0.054 0.00012 0.0050 0.0000 Moisture, TOC and PSA not calculated due to high moisture content grab mg/kg dw 2022 A76-2 A76 grab 16-Aug-22 0.037 0.00012 0.0050 0.00005 mg/kg dw Moisture, TOC and PSA not calculated due to high moisture content 2022 A76-3 A76 grab 0 16-Aug-22 0.043 <0.00005 0.0050 0.00005 mg/kg dw Moisture, TOC and PSA not calculated due to high moisture conte mg/kg dw Moisture, TOC and PSA not calculated due to high moisture content 2022 A76-4 A76 grab 16-Aug-22 0.052 0.00051 0.0050 0.00005 0 A76-5 NEM-1 16-Aug-22 mg/kg dw Moisture, TOC and PSA not calculated due to high moisture content 2022 A76 0.052 0.00024 0.0050 0.00005 grab 0 2022 NEM 15-Aug-22 0.026 0.0050 0.00005 mg/kg dw MeHg not included in this years MMP grab 2022 NEM-2 NEM grab 0 15-Aug-22 0.028 0.0050 0.00005 mg/kg dw MeHg not included in this years MMP 2022 NEM-3 NEM 0.0050 0.00005 mg/kg dw MeHg not included in this years MMP mg/kg dw MeHg not included in this years MMP grab 15-Aug-22 0.020 2022 NEM-4 NEM grab 15-Aug-22 0.024 0.0050 0.00005 0 2022 2022 NEM-5 WTS-1 NEM grab 15-Aug-22 0.024 0.0050 0.00005 mg/kg dw MeHg not included in this years MMP 0.0050 0.00086 WTS grab 0 14-Aug-22 0.045 0.00005 mg/kg dw 2022 WTS-2 WTS grab 14-Aug-22 0.037 0.0020 0.0050 0.00005 mg/kg dw 0 0.0069 2022 WTS-3 WTS 14-Aug-22 0.062 0.0050 0.0000 mg/kg dw grab 2022 WTS-4 WTS grab 14-Aug-22 0.071 0.0016 0.0050 0.00005 mg/kg dw 2022 2022 WTS-5 WTS 14-Aug-22 0.052 0.00095 0.0050 grab 0 0.00005 mg/kg dw B3-1 0.0050 B3 grab 0 18-Aug-22 0.039 0.0013 0.00005 mg/kg dw 2022 B3-2 B3 grab ٥ 18-Aug-22 0.036 0.00097 0.0050 0.00005 mg/kg dw 2022 B3-3 18-Aug-22 0.00005 B3 0.029 0.00073 0.0050 mg/kg dw grab 0 2022 B3-4 B3 grab 18-Aug-22 0.031 0.00048 0.0050 0.00005 mg/kg dw 0 18-Aug-22 2022 B3-5 B3 grab 0.035 0.0022 0.0050 0.00005 2022 DUP-3 DUP-3 13-Aug-22 0.027 0.00012 0.0050 0.00005 mg/kg dw Moisture, TOC and PSA not calculated due to high moisture content grab 2022 DUP-5 DUP-5 grab 15-Aug-22 0.078 0.00023 0.0050 0.00005 n mg/kg dw mg/kg dw MeHg not included in this years MMP 2022 15-Aug-22 DUP-6 DUP-6 grab 0.020 0.0050 0.0000 2022 DUP-7 DUP-7 grab 0 5 17-Aug-22 0.048 0.0040 0.0050 0.00005 mg/kg dw 2022 WTS-INUN WTS 21-Aug-22 0.017 0.0050 0.00005 mg/kg dw inundatio 8 undation samples; collected by spoo 2022 WTS-INUN-2 0.0050 WTS inundatior 21-Aug-22 0.13 0.0016 0.00005 mg/kg dw Inundation samples; collected by spoor 2022 2022 mg/kg dw Inundation samples; collected by spoon A20-INUN-1 A20 inundation 21-Aug-22 0.100 0.016 0.0050 0.00005 8 A20 21-Aug-22 0.025 A20-INUN-0.10 0.0050 mg/kg dw Inundation samples; collected by spoon inundatior 2022 A65-INUN-1 A65 inundation 19-Aug-22 0.11 0.0040 0.0050 0.00005 mg/kg dw Inundation samples; collected by spoon 8 2022 A65 19-Aug-22 0.12 0.0050 0.00005 A65-INUN-2 inundatio 8 0.0100 mg/kg dw Inundation samples; collected by spo 2023 INUG-SC-1 INUG core 0 1.5 22-Aug-23 0.029 0.00020 0.0050 0.00005 mg/kg dw 22-Aug-23 2023 INUG-SC-2 INUG core 1.5 0.033 0.0050 0.00005 2023 INUG-SC-3 INUG core 22-Aug-23 0.031 0.00029 0.0050 0.00005 mg/kg dw 2023 INUG-SC-4 INUG core 1.5 22-Aug-23 0.033 0.0050 0.00005 ٥ mg/kg dw 2023 INUG-SC-5 INUG 22-Aug-23 core 0.031 0.0050 0.0000 mg/kg dw 2023 INUG-SC-6 INUG core 1.5 22-Aug-23 0.030 0.00008 0.0050 0.00005 mg/kg dw 0 2023 2023 0.028 0.0050 0.00005 INUG-SC-7 INUG core 22-Aug-23 0.00012 mg/kg dw INUG-SC-8 INUG core 1.5 22-Aug-23 0.031 0.0050 0.00005 mg/kg dw 2023 INUG-SC-9 INUG core 22-Aug-23 0.035 0.00027 0.0050 0.00005 mg/kg dw 2023 INUG-SC-10 INUG 22-Aug-23 0.024 0.0050 0.00005 core mg/kg dw 2023 PDL-SC-1 PDL core 1.5 22-Aug-23 0.028 0.0050 0.00005 mg/kg dw PDL-SC-2 PDL 2023 core 1.5 22-Aug-23 0.023 0.0050 0.00005 mg/kg dw 2023 PDL-SC-3 PDL core 1.5 22-Aug-23 0.020 0.0050 0.00005 mg/kg dw 0

THg

MeHg

2023

PDL-SC-4

PDL

core

0.0050

0.00005

mg/kg dw

0.00018

22-Aug-23

0.022

1.5

٥

Notes: dv dry weight; = Not analyz THg MeHg Depth Start Depth End (cm) (cm) Year Sample ID Lake Method Date THg MeHg Detection Detect Hg Units Notes Limit Limit 2023 PDL-SC-5 22-Aug-23 0.022 0.00016 PDL 0.00005 mg/kg dw core 1.5 0.0050 2023 PDL-SC-6 PDL core ٥ 1.5 22-Aug-23 0.018 0.00007 0.0050 0.00005 mg/kg dw 2023 PDL-SC-7 PDL 22-Aug-23 0.020 0.0050 0.0000 core mg/kg dw 2023 PDL-SC-8 PDL core 0 1.5 22-Aug-23 0.019 0.0050 0.00005 mg/kg dw 2023 2023 PDL PDL 0.0050 PDL-SC-9 core 0 22-Aug-23 0.020 0.00016 0.00005 mg/kg dw PDL-SC-10 core 1.5 22-Aug-23 0.020 0.00016 0.00005 mg/kg dw 2023 2023 A20-SC-1 A20 core core 1.5 1.5 16-Aug-23 0.062 0.0050 0.00005 mg/kg dw 0 A20-SC-2 A20 16-Aug-23 0.052 0.0050 mg/kg dw 2023 A20-SC-3 A20 core 0 1.5 16-Aug-23 0.043 0.0050 0.00005 mg/kg dw 16-Aug-23 2023 A20-SC-4 A20 0.047 0.00051 0.0050 0.00005 core 0 mg/kg dw 2023 A20-SC-5 A20 core 0 1.5 16-Aug-23 0.060 0.00086 0.0050 0.00005 mg/kg dw 2023 A20-SC-6 A20 core 0 1.5 16-Aug-23 0.052 0.0050 0.00005 mg/kg dw 2023 A20-SC-7 0.046 A20 16-Aug-23 0.00088 0.0050 0.00005 core mg/kg dw 2023 A20-SC-8 A20 core 1.5 16-Aug-23 0.056 0.0050 0.00005 mg/kg dw 0 2023 A20-SC-9 A20 16-Aug-23 0.060 0.00028 0.0050 0.00005 core mg/kg dw 2023 A20-SC-10 A20 core 0 1.5 16-Aug-23 0.045 0.00070 0.0050 0.00005 mg/kg dw 2023 WTS-SC-1 WTS core 12-Aug-23 0.062 0.0050 0.00005 0 mg/kg dw <0.000066 2023 WTS-SC-2 WTS core 0 1.5 12-Aug-23 0.075 0.0050 0.00005 mg/kg dw 2023 WTS-SC-3 WTS core 0 1.5 12-Aug-23 0.046 0.00086 0.0050 0.00005 mg/kg dw 2023 2023 WTS-SC-4 WTS 1.5 1.5 12-Aug-23 0.030 0.0050 0.00005 mg/kg dw core 0.00030 WTS-SC-5 WTS core 0 12-Aug-23 0.00005 mg/kg dw 2023 2023 WTS-SC-6 WTS-SC-7 WTS WTS 1.5 1.5 12-Aug-23 12-Aug-23 0.0050 core 0 0.068 0.00036 0.00005 mg/kg dw 0.076 0.00005 0 core mg/kg dw 2023 WTS-SC-8 WTS core 0 1.5 12-Aug-23 0.072 0.0025 0.0050 0.00005 mg/kg dw 12-Aug-23 2023 WTS-SC-9 WTS 1.5 0.071 0.0050 0.0000 core mg/kg dw 2023 WTS-SC-10 WTS core 1.5 12-Aug-23 0.050 0.0050 0.00005 mg/kg dw 0 2023 2023 MAM-SC-1 MAM core 0 1.5 15-Aug-23 15-Aug-23 0.086 0.0050 0.00005 mg/kg dw MAM-SC-2 MAM core 1.5 0.082 0.00005 0 mg/kg dw 2023 MAM-SC-3 MAM core 1.5 15-Aug-23 0.082 0.0018 0.0050 0.00005 mg/kg dw 0 2023 MAM-SC-4 MAM core 0.076 0.0050 15-Aug-23 0.00005 mg/kg dw 2023 MAM-SC-5 MAM core 0 1.5 15-Aug-23 0.094 0.0022 0.0050 0.00005 mg/kg dw MAM-SC-6 MAM-SC-7 MAM MAM 2023 15-Aug-23 0.080 0.0012 0.0050 0.00005 core 0 mg/kg dw 2023 0.083 0.0050 0.00005 core 1.5 15-Aug-23 mg/kg dw 2023 2023 MAM-SC-8 MAM core 1.5 1.5 15-Aug-23 0.083 0.0050 0.00005 mg/kg dw MAM-SC-9 MAM 15-Aug-23 0.071 0.00037 0.0050 core 0.00005 mg/kg dw 2023 MAM-SC-10 MAM core 1.5 15-Aug-23 0.067 0.00032 0.0050 0.00005 mg/kg dw 0 2023 A76-SC-1 A76 core 13-Aug-23 0.059 0.0050 0.00005 0 mg/kg dw 2023 A76-SC-2 A76 core 0 1.5 13-Aug-23 0.047 0.0050 0.00005 mg/kg dw 2023 A76-SC-3 A76 core 1.5 13-Aug-23 0.044 0.0050 0.00005 0 mg/kg dw 2023 A76-SC-4 A76 core 1.5 13-Aug-23 0.045 0.0050 0.00005 mg/kg dw 2023 A76-SC-5 A76 core 1.5 13-Aug-23 0.043 0.0050 0.00005 mg/kg dw ٥ 2023 A76-SC-6 A76 core 13-Aug-23 0.044 0.0050 0.00005 0 mg/kg dw 2023 A76-SC-7 A76 core 0 1.5 13-Aug-23 0.042 0.0050 0.00005 mg/kg dw 2023 A76-SC-8 A76 13-Aug-23 0.0050 0.00005 core 0.050 mg/kg dw 2023 A76-SC-9 A76 core 1.5 13-Aug-23 0.054 0.0050 0.00005 mg/kg dw 0 2023 A76-SC-10 A76 core 1.5 13-Aug-23 0.055 0.0050 0.00005 mg/kg dw 0 2023 DS1-SC-1 DS1 core 17-Aug-23 0.075 0.0050 0.00005 mg/kg dw 2023 DS1-SC-2 DS1 core 0 1.5 17-Aug-23 0.081 0.0050 0.00005 mg/kg dw 2023 2023 DS1 DS1 17-Aug-23 17-Aug-23 0.076 0.0050 DS1-SC-3 core 1.5 0.00005 0 mg/kg dw DS1-SC-4 1.5 0.00005 core mg/kg dw 2023 2023 DS1-SC-5 DS1 DS1 core core 1.5 1.5 17-Aug-23 0.065 0.0050 0.00005 mg/kg dw 17-Aug-23 DS1-SC-6 0.075 0.0050 0.0000 mg/kg dw 2023 0.0050 DS1-SC-7 DS1 core 1.5 17-Aug-23 0.067 0.00005 mg/kg dw 0 2023 DS1-SC-8 DS1 core 0 17-Aug-23 0.068 0.0050 0.00005 mg/kg dw 2023 DS1-SC-9 DS1 core 1.5 17-Aug-23 0.050 0.0050 0.00005 mg/kg dw 0 2023 DS1-SC-10 DS1 core 0 1.5 17-Aug-23 0.060 0.0050 0.00005 mg/kg dw

= Not analyz Notes: dv dry weight; THg MeHg Depth Start Depth End (cm) (cm) Year Sample ID Lake Method Date THg MeHg Detection Detect Hg Units Notes Limit Limit 2023 INUG 22-Aug-23 INUG-1 mg/kg dw grab 0.0050 0.00005 2023 grab grab INUG-2 INUG n 22-Aug-23 0.0050 0.00005 mg/kg dw 2023 INUG-3 INUG 22-Aug-23 0.0050 0.0000 mg/kg dw 2023 INUG-4 INUG grab 0 22-Aug-23 0.0050 0.00005 mg/kg dw 5 2023 2023 INUG-5 INUG grab 0 22-Aug-23 0.0050 0.00005 mg/kg dw 0.0050 PDL-1 PDL grab 22-Aug-23 0.00005 mg/kg dw 2023 2023 PDL-2 PDL-3 PDL PDL grab 22-Aug-23 0.0050 0.00005 mg/kg dw 0 22-Aug-23 0.0050 grab mg/kg dw 2023 PDL-4 PDL grab 0 22-Aug-23 0.0050 0.00005 mg/kg dw 22-Aug-23 2023 PDL-5 PDL 0.0050 0.00005 grab 0 mg/kg dw 2023 A20-1 A20 grab 16-Aug-23 0.0050 0.00005 mg/kg dw 0 2023 2023 A20-2 A20 grab 0 16-Aug-23 0.0050 0.00005 mg/kg dw A20-3 0.0050 16-Aug-23 0.00005 grab mg/kg dw grab grab 2023 A20-4 A20 16-Aug-23 0.0050 0.00005 mg/kg dw 2023 A20-5 A20 16-Aug-23 0.0050 0.00005 mg/kg dw 2023 WTS-1 WTS grab 0 12-Aug-23 0.0050 0.00005 mg/kg dw 2023 WTS-2 WTS grab 12-Aug-23 0.0050 0.00005 0 mg/kg dw 2023 WTS-3 WTS grab 0 12-Aug-23 0.0050 0.00005 mg/kg dw 5 2023 2023 2023 WTS-4 WTS grab 0 12-Aug-23 0.0050 0.00005 mg/kg dw WTS-5 MAM-1 WTS MAM 12-Aug-23 0.0050 0.00005 mg/kg dw grab grab 15-Aug-23 0.00005 mg/kg dw 2023 2023 15-Aug-23 15-Aug-23 MAM-2 MAM grab 0 0.0050 0.00005 mg/kg dw MAM-3 MAM 0.0050 0.00005 grab mg/kg dw 2023 MAM-4 MAM grab 15-Aug-23 0.0050 0.00005 mg/kg dw 0 15-Aug-23 2023 MAM-5 MAM 0.0050 grab 0.00005 mg/kg dw 2023 A76-1 A76 grab 13-Aug-23 0.0050 0.00005 mg/kg dw 0 2023 2023 A76-2 A76-3 A76 grab 0 13-Aug-23 0.0050 0.00005 5 mg/kg dw 0.0050 A76 grab 13-Aug-23 0.00005 0 mg/kg dw 2023 A76-4 A76 grab 13-Aug-23 0.0050 0.00005 0 mg/kg dw 2023 A76 0.0050 A76-5 13-Aug-23 0.00005 mg/kg dw grab 2023 DS1-1 DS1 grab 0 5 17-Aug-23 0.0050 0.00005 mg/kg dw 2023 2023 DS1-2 DS1 17-Aug-23 0.0050 0.00005 grab 0 mg/kg dw DS1-3 0.0050 DS1 grab 17-Aug-23 0.00005 mg/kg dw 2023 2023 DS1-4 DS1 DS1 grab 17-Aug-23 0.0050 0.00005 mg/kg dw DS1-5 17-Aug-23 0.0050 grab 0.00005 mg/kg dw grab grab 2023 LK8-1 LK8 20-Aug-23 0.0050 0.00005 mg/kg dw 0 2023 LK8-2 LK8 20-Aug-23 0.0050 0.00005 0 mg/kg dw 2023 LK8-3 LK8 grab 0 20-Aug-23 0.0050 0.00005 mg/kg dw 5 2023 LK8-4 LK8 grab 20-Aug-23 0.0050 0.00005 mg/kg dw 2023 20-Aug-23 0.0050 0.00005 LK8-5 LK8 grab mg/kg dw 2023 DUP-SC-9 A76 core core 1.5 23-Aug-23 0.047 0.0050 0.00005 mg/kg dw Duplicate of A76-SC-4 ٥ 2023 DUP-SC-10 MAM 23-Aug-23 0.0013 0.0050 0.00005 mg/kg dw Duplicate of MAM-SC-3 0.088 0 2023 DUP-SC-12 A20 core 0 1.5 16-Aug-23 0.040 0.00032 0.0050 0.00005 mg/kg dw Duplicate of A20-SC-7 2023 DUP-SC-13 DS1 17-Aug-23 0.070 0.0050 0.00005 mg/kg dw Duplicate of DS1-SC-4 core 2023 DUP-SC-15 INUG core 1.5 22-Aug-23 0.031 0.00015 0.0050 0.00005 mg/kg dw Duplicate of INUG-SC-1 0 2023 DUP-SC-16 PDL core 1.5 22-Aug-23 0.018 0.00015 0.0050 0.00005 mg/kg dw Duplicate of PDL-SC-2 2023 Grab-DUP-3 INUG grab 22-Aug-23 0.0050 0.00005 mg/kg dw Duplicate of INUG-2 2023 Grab-DUP-5 LK8 grab 0 5 20-Aug-23 0.0050 0.00005 mg/kg dw Duplicate of LK8-4 2023 2023 Grab-DUP-6 A76 grab 23-Aug-23 0.0050 0.00005 mg/kg dw Duplicate of A76-1 0 MAM 0.0050 mg/kg dw Duplicate of MAM-1 15-Aug-23 0.00005 Grab-DUP-7 grab 2023 Grab-DUP-9 A20 grab grab 16-Aug-23 0.0050 0.00005 mg/kg dw Duplicate of A20-3 mg/kg dw Duplicate of DS1-5 2023 Grab-DUP-10 DS1 17-Aug-23 0.0050 0.0000 2023 A20-INUN-3 0.074 0.0056 0.0050 A20 inundation 14-Aug-2023 0.00005 mg/kg dw 2023 A20-INUN-4 A20 inundatio 8 14-Aug-2023 0.078 0.020 0.0050 0.00005 mg/kg dw 2023 WTS-INUN-3 WTS inundation 8 19-Aug-2023 0.034 0.0078 0.0050 0.00005 mg/kg dw 2023 WTS-INUN-4 WTS inundation 19-Aug-2023 0.078 0.021 0.0050 0.00005 8 mg/kg dw 2023 A65-INUN-3 A65 20-Aug-2023 0.060 0.0072 0.0050 0.00005 inundation 8 mg/kg dw 2023 A65-INUN-4 A65 inundation 8 20-Aug-2023 0.072 0.0059 0.0050 0.00005 mg/kg dw mg/kg dw Duplicate of A65-INUN-4 2023 DUP-INUN-1 A65 20-Aug-2023 0.065 0.0055 0.0050 0.00005 inundation 8

APPENDIX C FISH DATA

APPENDIX C1 SMALL-BODIED FISH MERCURY DATABASE

Table C1-1. Small-bodied fish samples collected for the Mercury Monitoring Program since 2018.

Notes: NSSB = Ninespine Stickleback; SLSC = Slimy Sculpin; "-" = Not Reported.

					Total Length	Field	Total Hg in Fish	Stable	sotopes	
Year	Sample ID	Lake	Date	Species	(mm)	Weight (g)	Tissue	C13	N15	Notes
					(,		(THg ppm ww)	010		
2018	14012	WTS	26-Jul-18	NSSB	38	0.40	0.052	-24	8.6	
2018	14014	WTS	26-Jul-18	NSSB	38	0.40	0.055	-27	8.5	
2018	14017	WTS	26-Jul-18	NSSB	45	0.60	0.075	-26	8.8	
2018	14018	WTS	26-Jul-18	NSSB	34	0.30	0.056	-24	9.3	
2018	14019	WTS	26-Jul-18	NSSB	48	0.70	0.045	-25	8.7	
2018	14022	WTS	26-Jul-18	NSSB	41	0.60	0.064	-26	9.0	
2018	14023	WTS	26-Jul-18	NSSB	46	0.60	0.041	-74	83	
2018	1/031	W/TS	28-101-18	NSSB	/3	0.50	0.038	-24	8.7	
2010	14041		20 Jul 10	NICCD	49	0.30	0.030	24	0.7	
2010	14041		29-Jul-18		49	0.70	0.028	-20	6.0	
2010	14044	NANA	29-Jul-18	SLSC	30	0.40	0.030	-24	0.7	
2010	14045	IVIAIVI	29-Jul-18	SLSC	30	0.20	0.030	-24	7.7	
2018	14049	IVIAIVI	29-Jul-18	SLSC	33	0.30	0.029	-25	0.5	
2018	14053	IVIAIVI	29-Jul-18	SLSC	29	0.30	0.041	-24	6.5	
2018	14059	MAM	29-Jul-18	SLSC	32	0.30	0.036	-24	7.2	
2018	14099	WIS	30-Jul-18	SLSC	37	0.40	0.041	-25	7.5	
2018	14100	WTS	30-Jul-18	SLSC	30	0.30	0.033	-23	6.5	
2018	14106	WTS	30-Jul-18	SLSC	35	0.30	0.039	-24	7.4	
2018	14109	WTS	30-Jul-18	SLSC	34	0.40	0.040	-25	7.6	
2018	14115	WTS	30-Jul-18	SLSC	32	0.30	0.033	-21	7.2	
2018	14126	A65	31-Jul-18	SLSC	36	0.40	0.044	-23	7.9	
2018	14129	A65	31-Jul-18	SLSC	39	0.60	0.034	-23	7.1	
2018	14131	A65	31-Jul-18	SLSC	38	0.40	0.033	-23	7.6	
2018	14132	A65	31-Jul-18	SLSC	33	0.30	0.037	-21	6.9	
2018	14156	A65	31-Jul-18	SLSC	37	0.50	0.039	-23	7.8	
2018	14161	A20	31-Jul-18	NSSB	45	0.60	0.035	-25	8.5	
2018	14162	A20	31-Jul-18	NSSB	42	0.50	0.039	-25	8.2	
2018	14166	A20	01-Aug-18	SLSC	29	0.20	0.045	-21	6.6	
2018	14177	A20	01-Aug-18	SLSC	30	0.30	0.045	-22	7.0	
2018	14181	A20	01-Aug-18	SLSC	32	0.30	0.033	-21	6.9	
2018	14183	A20	01-Aug-18	SLSC	34	0.30	0.026	-19	5.9	
2018	14186	A20	01-Aug-18	SLSC	33	0.20	0.029	-20	6.3	Tail broken- could not confirm FL
2018	14200	LK8	02-Aug-18	SLSC	30	0.30	0.026	-24	7.2	
2018	14201	LK8	02-Aug-18	SLSC	29	0.30	0.023	-22	6.6	
2018	14204	LK8	02-Aug-18	SLSC	36	0.20	0.034	-22	6.9	Fork length wrong- fish was 27 mm
2018	14206	1 K8	02-Aug-18	SLSC	28	0.20	0.025	-20	6.2	
2018	14208	1 K8	02-Aug-18	SLSC	32	0.20	0.019	-22	7.9	
2019	14262	ΔΔΔ	18-Aug-19	SLSC	36	0.30	0.024	-20	6.5	
2019	14266		18-Aug-19	SLSC	34	0.32	0.024	-22	6.5	
2019	14269	Δ44	18-Aug-19	SLSC	31	0.20	0.040	NΔ	NA	
2019	14270		18-Aug-19	SLSC	33	0.20	0.040		NA	
2013	14270	A44 A44	18-Aug-10	SLSC	33	0.27	0.031	10	6.4	Tail broken, could not confirm El
2019	14283	A44	10 Aug 10		21	0.33	0.020	-19	0.4	
2019	14297	A05	19-Aug-19	INSSB NICCD	31	0.22	0.029	-25	6.9	
2019	14299	A65	19-Aug-19	NSSB	35	0.27	0.035	-27	7.6	
2019	14304	A65	19-Aug-19	NSSB	48	0.79	0.051	-26	7.9	
2019	14305	A65	19-Aug-19	NSSB	42	0.57	0.042	-27	8.6	
2019	14330	A65	19-Aug-19	NSSB	33	0.24	0.033	-26	7.5	
2019	14334	A65	19-Aug-19	NSSB	47	0.88	0.044	NA	NA	
2019	14337	A65	19-Aug-19	NSSB	32	0.26	0.030	-26	6.9	
2019	14338	A65	19-Aug-19	NSSB	43	0.67	0.038	-26	8.3	
2019	14339	A65	19-Aug-19	NSSB	45	0.85	0.040	-25	8.3	
2019	14346	A65	19-Aug-19	NSSB	30	0.19	0.039	-25	6.4	
2019	14351	WTS	20-Aug-19	NSSB	31	0.22	0.057	-26	7.9	
2019	14361	WTS	20-Aug-19	NSSB	32	0.21	0.034	-28	7.1	
2019	14363	WTS	20-Aug-19	NSSB	35	0.14	0.035	-26	7.2	Fork length wrong- fish was 25 mm
2019	14369	WTS	20-Aug-19	NSSB	42	0.70	0.049	-26	8.5	
2019	14372	WTS	20-Aug-19	NSSB	34	0.29	0.025	-28	8.3	
2019	14378	WTS	20-Aug-19	SLSC	36	0.47	0.059	-26	8.2	
2019	14379	WTS	20-Aug-19	SLSC	32	0.32	0.025	-23	8.8	
2019	14380	WTS	20-Aug-19	SLSC	38	0.50	0.030	-27	8.7	
2019	14384	WTS	20-Aug-19	SLSC	37	0.45	0.043	-26	7.3	
2019	14386	WTS	20-Aug-19	SLSC	34	0.38	0.12	-28	7.8	
2019	14418	WTS	20-Aug-19	NSSB	37	0.40	0.033	-29	10.3	
2019	14464	A20	21-Aug-19	NSSB	45	0.78	0.043	NA	NA	
2019	14465	A20	21-Aug-19	NSSB	44	0.52	0.043	-25	7.6	
2019	14466	A20	21-Aug-19	NSSB	43	0.53	0.045	-25	7.0	
2019	14470	A20	21-Aug-19	NSSB	38	0.31	0.054	-29	6.7	
2019	14477	A20	21-Aug-19	NSSB	33	0.23	0.040	-28	6.4	
2019	14481	Δ20	21-Aug-10	NSSR	48	0.78	0.040	-25	8.7	
2019	14/25	Δ20	21-Διισ-10	NCCB	10 2	0.70	0.035	_2/	7.2	
2019	11/05	A20	21-Aug 10	NICCD	-+3 2E	0.31	0.040	-24 _27	6.0	
2019	14495	A20	21-Aug-19	NCCD	35	0.24	0.037	-27	0.0	
2019	1449/	AZU	∠1-Aug-19	IN22R	30 24	0.32	0.045	-25	1.2	
2019	14498	A20	21-Aug-19	NSSB	31	0.25	0.053	-24	/.4	
2019	14503	MAM	22-Aug-19	SLSC	36	0.42	0.033	-20	7.8	
2019	14506	MAM	22-Aug-19	SLSC	38	0.45	0.031	-22	8.3	
2019	14508	MAM	22-Aug-19	SLSC	36	0.37	0.042	-22	8.1	
2019	14532	MAM	22-Aug-19	SLSC	39	0.42	0.041	-22	8.0	
2019	14534	MAM	22-Aug-19	SLSC	40	0.45	0.035	-23	7.6	
2019	14535	MAM	22-Aug-19	NSSB	43	0.51	0.030	-27	9.8	

Table C1-1. Small-bodied fish samples collected for the Mercury Monitoring Program since 2018.

Notes: NSSB = Ninespine Stickleback; SLSC = Slimy Sculpin; "-" = Not Reported.

					Total Length	Field	Total Hg in Fish	Stable	sotopes	
Year	Sample ID	Lake	Date	Species	(mm)	Weight (g)	Tissue	C13	N15	Notes
2010	44526		22.4 . 40	NICCD	40	0.70	(THg ppm ww)	26	0.2	
2019	14536		22-Aug-19	NSSB	49	0.76	0.039	-26	9.3	
2020	14540		21-Aug-20		37	0.42	0.026	-20	8.0 6.0	
2020	14550	ΜΔΜ	21-Aug-20	NSSB	40	0.19	0.024	-25	0.9	
2020	14562	MAM	21 Aug 20 21-Aug-20	SLSC	37	0.36	0.025	-24	7.7	
2020	14565	MAM	21-Aug-20	SLSC	38	0.45	0.061	-25	6.7	
2020	14577	MAM	21-Aug-20	SLSC	38	0.46	0.021	-18	7.4	Tail broken- could not confirm FL
2020	14578	MAM	21-Aug-20	SLSC	35	0.36	0.023	-21	7.2	
2020	14580	MAM	21-Aug-20	NSSB	34	0.25	0.022	-27	7.7	
2020	14604	LK1	22-Aug-20	SLSC	39	0.68	0.070	-25	8.1	
2020	14607	LK1	22-Aug-20	SLSC	35	0.41	0.085	-26	7.8	
2020	14608	LK1	22-Aug-20	SLSC	34	0.51	0.071	-25	7.6	
2020	14613	LK1	22-Aug-20	SLSC	34	0.34	0.072	-24	7.3	
2020	14614	LK1	22-Aug-20	SLSC	35	0.56	0.030	-23	5.9	
2020	14622	LK8	23-Aug-20	SLSC	35	0.39	0.025	-17	6.1	
2020	14628	LK8	23-Aug-20	SLSC	34	0.29	0.031	-22	6.4	
2020	14634	LK8	23-Aug-20	SLSC	31	0.27	0.022	-18	6.1	
2020	14637		23-Aug-20	SLSC	27	0.22	0.040	-21	7.2	
2020	14047		25-Aug-20	NSSB	30 //1	0.27	0.030	-19	0.0 8.2	
2020	14657	WTS	26-Aug-20	NSSB	38	0.45	0.025	-20	8.7	
2020	14660	WTS	26-Aug-20	NSSB	36	0.29	0.35	-30	8.6	
2020	14661	WTS	26-Aug-20	NSSB	39	0.43	0.34	-29	8.3	
2020	14671	WTS	26-Aug-20	NSSB	45	0.62	0.37	-30	8.9	
2020	14672	WTS	26-Aug-20	NSSB	41	0.42	0.29	-30	8.3	
2020	14673	WTS	26-Aug-20	NSSB	47	0.67	0.30	-31	9.2	
2020	14675	WTS	26-Aug-20	NSSB	44	0.56	0.35	-31	7.8	
2020	14676	WTS	26-Aug-20	NSSB	42	0.54	0.36	-31	8.0	
2020	14677	WTS	26-Aug-20	NSSB	31	0.22	0.31	-29	8.3	
2020	14687	WTS	26-Aug-20	NSSB	34	0.30	0.23	-27	10.1	
2020	17000	WTS	26-Aug-20	SLSC	37	0.52	0.31	-28	7.8	
2020	17014	WTS	26-Aug-20	SLSC	40	0.58	0.23	-28	7.4	
2020	17019	WIS	26-Aug-20	SLSC	45	0.71	0.30	-28	7.8	
2020	17020		26-Aug-20	SLSC	43	0.64	0.27	-28	7.5	
2020	17021	A20	20-Aug-20	NSSB	41	0.59	0.55	-28	0.2 7.0	
2020	17023	A20	27 Aug 20 27-Aug-20	NSSB	32	0.21	0.071	-27	7.0	
2020	17020	A20	27-Aug-20	NSSB	31	0.22	0.087	-27	7.2	
2020	17031	A20	27-Aug-20	NSSB	41	0.46	0.32	-28	7.3	
2020	17039	A20	27-Aug-20	NSSB	35	0.28	0.51	-29	7.4	
2020	17041	A20	27-Aug-20	NSSB	37	0.35	0.27	-27	6.6	
2020	17045	A20	27-Aug-20	NSSB	42	0.55	0.095	-29	7.6	
2020	17047	A20	27-Aug-20	NSSB	40	0.43	0.22	-26	6.6	
2020	17050	A20	27-Aug-20	NSSB	43	0.44	0.13	-28	7.4	
2020	17051	A20	27-Aug-20	NSSB	39	0.33	0.23	-27	6.3	
2020	17063	A20	27-Aug-20	SLSC	37	0.46	0.19	-24	5.8	
2020	17064	A20	27-Aug-20	SLSC	36	0.36	0.057	-24	5.2	
2020	17065	A20	27-Aug-20	SLSC	35	0.35	0.13	-25	4.9	
2020	17075	A20	27-Aug-20	SLSC	31	0.55	0.078	-22	5.4 1 7	
2020	17097	A65	27-Aug-20	NSSR	35	0.34	0.74	-29	73	
2020	17099	A65	27-Aug-20	NSSB	38	0.39	0.088	-27	7.5	
2020	17102	A65	27-Aug-20	NSSB	36	0.40	0.13	-27	7.2	
2020	17103	A65	27-Aug-20	NSSB	46	0.81	0.16	-28	7.4	
2020	17105	A65	27-Aug-20	NSSB	33	0.26	0.28	-29	8.0	
2020	17108	A65	27-Aug-20	NSSB	45	0.58	0.20	-29	7.5	
2020	17110	A65	27-Aug-20	NSSB	43	0.57	0.32	-31	8.4	
2020	17124	A65	27-Aug-20	NSSB	42	0.45	0.16	-26	7.5	
2020	17125	A65	27-Aug-20	NSSB	41	0.41	0.16	-29	8.1	
2020	17127	A65	27-Aug-20	NSSB	31	0.20	0.11	-26	8.4	
2020	17138	A65	27-Aug-20	SLSC	42	0.88	0.14	-26	6.4	
2020	17141	A65	27-Aug-20	SLSC	44	0.80	0.15	-28	6.1	
2020	17142	405 465	27-Aug-20	SLSU	42 15	0.87	0.13	-20 _20	7.5 7.2	
2020	17150	A05 465	27-Aug-20 27-Διισ-20	5150	45 <u>4</u> 5	0.76	0.14	-20	7.5	
2020	17172	A44	29-Aug-20	SUSC	33	0.33	0.037	-19	6.6	
2020	17181	A44	29-Aug-20	SLSC	36	0.38	0.053	-21	6.5	
2020	17187	A44	29-Aug-20	SLSC	32	0.45	0.036	-21	6.5	
2020	17190	A44	29-Aug-20	SLSC	35	0.39	0.039	-21	7.0	
2020	17196	A44	29-Aug-20	SLSC	35	0.34	0.042	-21	6.0	
2020	17200	A44	29-Aug-20	NSSB	45	0.52	0.042	-27	8.8	
2020	17201	B3	29-Aug-20	SLSC	34	0.34	0.021	-19	4.7	
2020	17203	B3	29-Aug-20	SLSC	37	0.42	0.025	-22	6.8	
2020	17206	B3	29-Aug-20	SLSC	39	0.46	0.043	-23	6.5	
2020	17223	B3	29-Aug-20	SLSC	38	0.51	0.024	-20	5.7	
2020	17224	B3	29-Aug-20	SLSC	37	0.53	0.051	-20	5.5	
2020	1/235	B3	29-Aug-20	NSSB	45	0.60	0.018	-28	8.3	
2021	1/369	A20	10-AUg-21	SLSC	45.2	0.70	0.10	-23	1.2	1

Table C1-1. Small-bodied fish samples collected for the Mercury Monitoring Program since 2018.

Notes: NSSB = Ninespine Stickleback; SLSC = Slimy Sculpin; "-" = Not Reported.

					Total Length	Field	Total Hg in Fish	Stable	sotopes	
Year	Sample ID	Lake	Date	Species	(mm)	Weight (g)	Tissue	C13	N15	Notes
					. ,	0 10/	(THg ppm ww)			
2021	17370	A20	10-Aug-21	SLSC	44.8	0.60	0.080	-22	6.2	
2021	17371	A20	10-Aug-21	SLSC	33.8	0.30	0.13	-24	7.0	
2021	17372	A20	10-Aug-21	SLSC	33.2	0.20	0.11	-23	6.9	
2021	17375	A20	10-Aug-21	NSSB	52.8	0.90	0.21	-27	8.8	
2021	17376	A20	10-Aug-21	NSSB	59.1	1.1	0.13	-27	8.8	
2021	17377	A20	10-Aug-21	NSSB	45.5	0.40	0.17	-28	9.0	
2021	17383	A20	10-Aug-21	NSSB	45.4	0.50	0.16	-27	8.8	
2021	1/83/	A20	10-Aug-21	NSSB	55.4	1.0	0.14	-28	9.4	
2021	17843	AZU ACE	10-Aug-21	SLSC	49.1	0.90	0.080	-23	6.U	
2021	17845	A05	12-Aug-21	SLSC	44.9	0.60	0.10	-20	8.5 7.6	
2021	17850	A65	12-Aug-21	SISC	44.5	0.70	0.17	-20	7.0	
2021	17853	A65	12-Aug-21	SLSC	47 1	0.00	0.22	-27	8.1	
2021	17855	A65	12-Aug-21	SLSC	42.1	0.60	0.12	-26	7.7	
2021	17856	A65	12-Aug-21	NSSB	59.4	1.2	0.18	-27	8.9	
2021	17857	A65	12-Aug-21	NSSB	60.1	1.2	0.28	-27	9.0	
2021	17859	A44	13-Aug-21	SLSC	37	0.30	0.040	-23	7.1	
2021	17863	A44	13-Aug-21	SLSC	33	0.20	0.040	-22	7.3	
2021	17872	WTS	14-Aug-21	SLSC	66.1	2.3	0.30	NA	NA	
2021	17874	WTS	14-Aug-21	SLSC	60.2	1.7	0.34	-29	7.5	
2021	17875	WTS	14-Aug-21	SLSC	51.6	1.0	0.48	-28	8.6	
2021	17876	WTS	14-Aug-21	SLSC	38.7	0.40	0.38	-30	7.4	
2021	17877	WTS	14-Aug-21	SLSC	40.8	0.60	0.35	-31	6.9	
2021	17880	WTS	14-Aug-21	NSSB	55.1	0.90	0.43	-27	10.9	
2021	17882	WTS	14-Aug-21	NSSB	57.5	1.0	0.31	-28	9.9	
2021	17887	B3	14-Aug-21	SLSC	50.5	0.90	0.030	-21	6.0	
2021	17892	B3	14-Aug-21	SLSC	34.3	0.20	0.020	-22	6.9	
2021	17893	83 83	14-Aug-21	NSSB	56.1	1.0	0.030	-26	8.8 0 r	
2021	17894	11/8	14-Aug-21		52.0	0.80	0.030	-20	8.5 6.7	
2021	17897	LK8	15-Aug-21	SLSC	68.9	3.0	0.030	-25	6.7	
2021	17898	LK0	15-Aug-21	SLSC	52.2	1.0	0.040	-23	7.3	
2021	17904	LK8	15-Aug-21	SLSC	61.9	1.9	0.040	-24	7.7	
2021	17905	LK8	15-Aug-21	SLSC	57.2	1.5	0.020	-22	6.9	
2021	17958	WTS	16-Aug-21	SLSC	39.3	0.50	0.27	-30	5.5	
2021	17961	WTS	16-Aug-21	SLSC	69.3	3.3	0.30	-28	8.1	
2021	17964	WTS	16-Aug-21	SLSC	45.1	0.70	0.27	-30	7.0	
2021	17965	WTS	16-Aug-21	SLSC	63.9	1.9	0.39	-29	7.8	
2021	17966	WTS	16-Aug-21	SLSC	42.1	0.60	0.33	-30	6.0	
2021	17970	WTS	16-Aug-21	NSSB	53.1	0.80	0.21	-26	9.0	
2021	17972	WTS	16-Aug-21	NSSB	43.9	0.70	0.32	-27	9.1	
2021	17973	WTS	16-Aug-21	NSSB	60.2	1.3	0.24	-26	9.4	
2021	17980	MAM	17-Aug-21	NSSB	45.1	0.50	0.090	-25	9.7	
2021	17982	MAM	17-Aug-21	NSSB	59.8	1.2	0.050	-26	9.5	
2021	17995	MAM	17-Aug-21	NSSB	48.1	0.60	0.060	-25	9.9	
2021	18006	MAM	17-Aug-21	NSSB	55.2	1.0	0.030	-25	10.8	
2021	18009		17-Aug-21	NSSB	46.2	0.70	0.030	-26	9.6	
2021	18010		17-Aug-21	SLSC	34.2	0.30	0.050	-24	8.4 7.9	
2021	18023	ΜΔΜ	17-Aug-21	SISC	<u></u> Δ0 1	0.40	0.030	-22	7.0	
2021	18033	MAM	17-Aug-21	SLSC	39	0.40	0.020	-23	8.2	
2021	18042	MAM	17-Aug-21	SLSC	37.2	0.40	0.040	-23	7.4	
2021	18045	B3	18-Aug-21	SLSC	39	0.50	0.020	-24	6.3	
2021	18049	B3	18-Aug-21	SLSC	38.5	0.40	0.020	-23	6.1	
2021	18052	B3	18-Aug-21	SLSC	39.5	0.40	0.020	-23	6.2	
2021	18053	B3	18-Aug-21	SLSC	69	2.9	0.040	-23	6.7	
2021	18057	B3	18-Aug-21	SLSC	40	0.40	0.020	-21	5.7	
2021	18059	B3	18-Aug-21	SLSC	44.5	0.60	0.030	-23	6.4	
2021	18062	B3	18-Aug-21	SLSC	58.1	1.6	0.030	-21	6.3	
2021	18065	B3	18-Aug-21	SLSC	63.2	2.1	0.030	-23	7.1	
2021	18067	B3	18-Aug-21	NSSB	52.9	0.90	0.040	-28	8.7	
2021	18068	B3	18-Aug-21	NSSB	58.3	1.3	0.050	-28	8.9	
2021	18071	83	18-Aug-21	NSSB	55.8	1.0	0.040	-28	8.3	
2021	18074	A44	18-Aug-21	SLSU	49.2 50.1	0.90	0.020	-21	6.4	
2021	18074	Δ11	18-Διισ-71	SISC	50.1	1 5	0.050	-20	6.2	
2021	18076	A44	18-Aug-21	NSSB	68.8	2.0	0.070	-24	8.6	
2021	18077	A44	18-Aug-21	NSSB	63.3	1.3	0.080	-29	9.2	
2021	18078	A44	18-Aug-21	NSSB	57.9	1.1	0.040	-26	8.0	
2021	18079	A44	18-Aug-21	NSSB	51.1	0.70	0.040	-27	8.6	
2023	SC-219	LK8	25-Aug-23	SLSC	-	-	0.026	-18	7.1	
2023	SC-223	LK8	25-Aug-23	SLSC	-	-	0.062	-25	7.1	
2023	SC-224	LK8	25-Aug-23	SLSC	-	-	0.031	-22	6.6	
2023	SC-226	LK8	25-Aug-23	SLSC	-	-	0.060	-24	6.7	
2023	SC-230	LK8	25-Aug-23	SLSC	-	-	0.057	-21	7.6	
2023	SC-235	LK8	25-Aug-23	SLSC	-	-	0.042	-23	6.4	
2023	SC-247	LK8	25-Aug-23	SLSC	-	-	0.031	-21	7.0	
2023	SC-250	LK8	25-Aug-23	SLSC	-	-	0.023	-18	6.9	

Table C1-1. Small-bodied fish samples collected for the Mercury Monitoring Program since 2018.

					Total Longth	Field	Total Hg in Fish	Stable	sotopes	
Year	Sample ID	Lake	Date	Species	(mm)	Weight (g)	Tissue (THg ppm ww)	C13	N15	Notes
2023	SC-251	LK8	25-Aug-23	SLSC	-	-	0.040	-24	7.4	
2023	SC-252	LK8	25-Aug-23	SLSC	-	-	0.035	-20	6.9	
2023	SC-19	MAM	20-Aug-23	SLSC	40	0.4908	0.047	-18	9.3	
2023	SC-27	MAM	20-Aug-23	SLSC	40	0.4921	0.029	-19	8.6	
2023	SC-37	MAM	20-Aug-23	SLSC	39	0.4533	0.052	-22	9.2	
2023	SC-38	MAM	20-Aug-23	SLSC	39	0.4925	0.046	-19	10.4	

Notes: NSSB = Ninespine Stickleback; SLSC = Slimy Sculpin; "-" = Not Reported.

APPENDIX C2 LARGE-BODIED FISH MERCURY DATABASE

LAKE TROUT SAMPLING PROGRAM OVERVIEW

Fish tissue data have been collected in Whale Tail area lakes under various programs dating back to baseline sampling in 2015. Methods for each sampling event are outlined below.

- 2015 Whale Tail and Kangislulik Lake Sampling Lake Trout were captured in Whale Tail Lake and Kangislulik Lake for collection of muscle tissue for baseline mercury and metals analysis. Fish sampling was conducted by C. Portt and Associates. Fish were captured using gill nets and samples of skinless, boneless dorsal muscle were collected in the field using a standard filleting knife. Samples were placed in labelled Whirl-Pak[®] bags, frozen, and transported to Guelph, Ontario, where they were stored frozen prior to shipping to ALS Laboratories in Burnaby, BC (C. Portt and Associates 2018).
- 2018 Fish-out of the North Basin of Whale Tail Lake The fish-out was conducted by North/South Consultants (Winnipeg, MB). Results of the fish-out were submitted to the Department of Fisheries and Oceans in accordance with project requirements. Fish were captured using gill nets and filleted in the field. Tissue samples were placed in labelled Whirl-Pak[®] bags, frozen, and shipped to University of Waterloo. All fish tissue samples collected by North/South had skin and muscle tissue taken from the caudal peduncle.
- The fish tissue sample sizes varied between samples; to maximize the preservation of baseline samples, University of Waterloo selected 20 of the largest tissue samples from each species (Round Whitefish, Arctic Char and Lake Trout) collected during the fish-out.
- 2018 Lake 8 Reference In 2018, University of Waterloo researchers collected eight Lake Trout tissue samples from Reference Lake 8. Fish were captured using gill nets and filleted in the field. Tissue samples were collected following *Swanson Lab SOP Fish sampling for chemical parameters*; tissue samples were taken from the muscle located above the lateral line and anterior to the dorsal fin. Tissue samples were placed in labelled Whirl-Pak[®] bags, frozen, and shipped to University of Waterloo. These eight samples serve as reference/control data for this work and future productivity studies.
- 2020 EEM and supplementary sampling As part of the 2020 Cycle 1 EEM study implemented by C. Portt and Associates, Lake Trout were collected from Kangislulik Lake, Lake 8, and Lake D1. Additional fish were collected from Whale Tail Lake and Lake DS1 for the MMP. Fish were captured using gill nets and filleted in the field. Boneless, skinless dorsal muscle was taken from anterior to the dorsal fin. Tissue samples were placed in labelled Whirl-Pak[®] bags, frozen, and transported to the University of Waterloo.

 2023 EEM and supplementary sampling – As part of the 2023 Cycle 1 EEM study implemented by C. Portt and Associates, Lake Trout were captured from Kangislulik Lake, Lake 8, and Lake D1. Additional fish were collected from Whale Tail Lake for the MMP. A select number of fish of similar size classes as previous years were retained for mercury analysis in muscle tissue. Fish were captured using gill nets and filleted in the field. Boneless, skinless dorsal muscle was taken from anterior to the dorsal fin. Tissue samples were placed in labelled Whirl-Pak[®] bags, frozen, and transported to the University of Waterloo. Notes: ¹ Kangitulik Lake (KAN) was previously referred to as Mammoth Lake (MAM). ² M - Mature; I = Immature; U = Unknown. DELTs = Deformites, erosion, lesions, or tumours. NA = No datu U = Unknown

				Capture		Fork Length		Liver Weight	Gonad weight			Egg Sample				Total Mercu	ry in fish tissue		Stable	Isotopes	Condition			
Fish ID	Year	Date	Area *	Method Effort	Species	(mm)	Weight (g)	(g)	(g)	Sex	Maturity*	Weight (g)	Egg Count A	kge (years)	Sample T	'Hg in Sample	THg (ppm)	[Hg (ppm ww	C13	N15	(К)	Stomach Contents	DELTs	Comment
46	2015	NA	Whale Tail	NA	Lake Trout	568	1830	NA	NA	F	м	NA	NA	28	NA	(ng) NA	NA	0.59	NA	NA	1.00	NA	none	NA
47	2015 2015	NA NA	Whale Tail Whale Tail	NA NA	Lake Trout Lake Trout	661 581	3110 2210	NA NA	NA NA	F	M	NA NA	NA NA	24	NA NA	NA	NA NA	0.83	NA NA	NA	1.1	NA	none	NA NA
49 50	2015 2015	NA NA	Whale Tail Whale Tail	NA NA	Lake Trout Lake Trout	608 481	2230 1090	NA NA	NA NA	F	M I	NA NA	NA NA	26 25	NA NA	NA NA	NA NA	0.97	NA NA	NA	0.99	NA NA	none	NA NA
52	2015 2015	NA	Whale Tail Whale Tail	NA	Lake Trout	445	1130 970	NA NA	NA NA	M	M I	NA NA	NA	15	NA	NA	NA NA	0.14	NA	NA	1.3	NA	none	NA
55	2015	NA	Whale Tail Whale Tail	NA	Lake Trout	388	607	NA	NA	M	M	NA	NA	13	NA	NA	NA	0.33	NA	NA	1.2	NA	none	NA
58	2015	NA NA	Whale Tail Whale Tail	NA	Lake Trout	380	987 655	NA	NA	M	M	NA	NA	18	NA	NA	NA	0.37	NA	NA	1.2	NA NA	none	NA NA
61	2015	NA	Whale Tail Whale Tail	NA	Lake Trout	430 860	7320	NA	NA	M	M	NA	NA	44	NA	NA	NA	2.2	NA	NA	1.2	NA	none	NA
63	2015	NA	Whale Tail Whale Tail	NA	Lake Trout	475	1020	NA	NA	M	M	NA	NA	25	NA	NA	NA	0.80	NA	NA	0.95	NA	none	NA
65	2015	NA NA	Whale Tail Whale Tail	NA	Lake Trout	410	693	NA	NA	F	M	NA	NA	14	NA	NA	NA	0.29	NA	NA	0.92	NA NA	none	NA NA
68	2015	NA	Whale Tail	NA	Lake Trout	319	348	NA	NA	M		NA	NA	9	NA	NA	NA	0.14	NA	NA	1.1	NA	none	NA
70	2015	NA	Whale Tail	NA	Lake Trout	390	672	NA	NA	F	R	NA	NA	19	NA	NA	NA	0.32	NA	NA	1.1	NA	none	NA
98	2015	NA	Kangislulik	NA	Lake Trout	369	501	NA	NA	F	M	NA	NA	13	NA	NA	NA	0.25	NA	NA	1.00	NA	none	NA
100	2015	NA	Kangislulik Kangislulik	NA	Lake Trout	3/3	542	NA	NA	M	M	NA	NA	na	NA	NA	NA	0.16	NA	NA	1.1	NA NA	none	NA NA
101	2015	NA	Kangislulik	NA	Lake Trout	353	480	NA	NA	F	M	NA	NA	10	NA	NA	NA	0.14	NA	NA	0.98	NA	none	NA
105	2015	NA	Kangislulik	NA	Lake Trout	385	612	NA	NA	F	M	NA	NA	10	NA	NA	NA	0.13	NA	NA	1.1	NA	none	NA
108	2015	NA	Kangislulik	NA	Lake Trout	395	474	NA	NA	M	M	NA	NA	12 na	NA	NA	NA	0.12	NA	NA	1.1	NA	none	NA
110	2015	NA	Kangislulik	NA	Lake Trout	365	504	NA	NA	M	M	NA	NA	10	NA	NA	NA	0.18	NA	NA	1.0	NA	none	NA
112	2015	NA	Kangislulik Kangislulik	NA	Lake Trout	590	2110	NA	NA	M	M	NA	NA	24	NA	NA	NA	0.18	NA	NA	1.0	NA	none	NA
115	2015	NA	Kangislulik Kangislulik	NA	Lake Trout	354	472	NA	NA	M	M	NA	NA	13	NA	NA	NA	0.13	NA	NA	1.1	NA	none	NA
118	2015	NA	Kangislulik	NA	Lake Trout	316	319	NA	NA	M		NA	NA	10	NA	NA	NA	0.22	NA	NA	1.0	NA	none	NA
120	2015	NA	Kangislulik	NA	Lake Trout	290	287	NA	NA	F		NA	NA	8	NA	NA	NA	0.13	NA	NA	1.2	NA	none	NA
121	2015	NA	Kangislulik	NA	Lake Trout	254	181	NA	NA	0 0		NA	NA	6	NA	NA	NA	0.078	NA	NA	1.1	NA	none	NA
123	2015	NA	Kangislulik	NA	Lake Trout	700	4670	NA	NA	F	M	NA	NA	37	NA	NA	NA	1.1	NA	NA	1.4	NA	none	NA
14241	2015	22-Aug-18	Lake 8	NA NA	Lake Trout	375	596	NA	NA	F	1	NA	NA	NA	0.022	13	0.61	0.14	NA NA	NA NA	1.1	zooplankton	NA	NA NA
14242	2018	22-Aug-18 22-Aug-18	Lake 8 Lake 8	NA	Lake Trout	491	1980	NA	NA	F	U	NA	NA	NA	0.020	22	3.7	0.81	NA	NA	0.99	zooplankton	NA NA	NA
14244	2018	22-Aug-18 22-Aug-18	Lake 8	NA	Lake Trout	490	1210	NA	NA	F	M	NA	NA	NA	0.023	32	1.5	0.33	NA	NA	1.1	zooplankton	NA	NA
14240	2018	22-Aug-18	Lake 8	NA	Lake Trout	204	83.3	NA	NA	M	1	NA	NA	NA	0.022	8.6	0.38	0.084	NA	NA	0.98	zooplankton	NA	NA
1000-13	2018	10-Aug-18	Whale Tail	NA	Lake Trout	390	600	3.9	NA	M		NA	NA	NA	0.021	36	1.8	0.39	NA	NA	1.0	0 bisbas	NA	NA
1002-10	2018	11-Aug-18	Whale Tail Whale Tail	NA	Lake Trout	395	600	6	3.4	F	M	NA	NA	NA	0.023	34	1.6	0.34	NA	NA	0.97	0	NA	NA
1003-3 1009a-1	2018	14-Aug-18	Whale Tail	NA	Lake Trout	570	1900	26.9	NA NA	M	M	NA	NA	NA	0.022	49	2.3	0.50	NA	NA	1.0	0 invests	NA	NA
500a-18 500a-7	2018	13-Aug-18	Whale Tail	NA	Lake Trout	260	200	2.2	NA NA	M	i i	NA	NA	NA	0.020	10	0.51	0.11	NA	NA	1.1	inverts	NA	NA
500b-3	2018	13-Aug-18	Whale Tail	NA	Lake Trout	295	300	3.3	NA NA	F	1	NA	NA	NA	0.023	14	0.64	0.14	NA	NA	1.2	inverts	NA	NA
501a-12 501a-19	2018	13-Aug-18	Whale Tail Whale Tail	NA	Lake Trout	390	825	4.7	NA NA	M	M	NA	NA	NA	0.022	29	1.4	0.32	NA	NA	1.4	inverts	NA	NA
502a-11 502b-5	2018	13-Aug-18	Whale Tail Whale Tail	NA	Lake Trout	403	800	8.6	NA NA	M	M	NA	NA	NA	0.022	15	0.68	0.15	NA	NA	1.2	mollusks	NA	NA NA
531b-2	2018	20-Aug-18	Whale Tail Kangislulik	NA 1.1	Lake Trout	836	5600	NA 51.47	NA 101.49	F	M	NA	NA	NA 42	0.018	281	16	3.4	NA	NA 13	0.96	NA	NA	NA
LT-2	2020	19-Aug-20	Kangislulik	1.1	Lake Trout	705	4110	56.2	413	F	M	57.26	NA	40	0.0064	29	4.5	1.00	-20.99000	12	1.2	NA	NA	NA
LT-4	2020	19-Aug-20	Kangislulik	1.1	Lake Trout	807	6570	62.84	220	M	M	NA	NA	33	0.0056	41	7.4	1.6	-21.98000	13	1.3	Lake Trout, 410 mm	NA	NA
LT-6	2020	19-Aug-20	Kangislulik	1.1	Lake Trout	494	1219	8.88	1.42	M	I M	NA	NA	22	0.0039	4.0	1.0	0.23	-21.22000	11	1.0	NA	NA	NA
LT-8	2020	19-Aug-20	Kangislulik	1.1	Lake Trout	341	543	5.45	17.53	M	M	NA	NA	12	0.0053	2.6	0.49	0.11	-24.02000	9.4	1.4	NA	NA	NA
LT-10	2020	19-Aug-20	Kangislulik	1.1	Lake Trout	356	588	8.53	59.79	F	м	59.79	NA	14	0.0070	3.9	0.55	0.12	-23.66000	9.3	1.3	NA	14 encysted parasites on stomach	NA
LT-11 LT-12	2020 2020	19-Aug-20 19-Aug-20	Kangislulik Kangislulik	1.1	Lake Trout Lake Trout	270 265	226 197	2.91 1.83	0.12	F	1	NA NA	NA NA	12	0.0049	2.3	0.48	0.11	-24.39000	9.2 11	1.1	NA NA	NA	NA NA
LT-13	2020	19-Aug-20	Kangislulik	1.1	Lake Trout	266	230	2.66	0.11	F	1	NA	NA	8	0.0052	1.4	0.26	0.058	-25.89000	8.7	1.2	NA	NA	NA
LT-15 LT-16	2020	19-Aug-20 19-Aug-20	Kangislulik	1.1	Lake Trout	382	648 355	4.15	7.02	F	1	NA	NA	19	0.0041 0.0052	4.0	0.97	0.21	-24.55000	10	1.2	NA	NA	NA
LT-17	2020	19-Aug-20	Kangislulik	1.1	Lake Trout	270	246	2.72	0.38	F	1	NA	NA	7	0.0042	1.8	0.43	0.094	-27.14000	8.9	1.3	NA	23 encysted parasites on stomach	NA
LT-18 LT-19	2020 2020	19-Aug-20 19-Aug-20	Kangislulik Kangislulik	1.1	Lake Trout Lake Trout	232 217	141 119.6	1.47	0.03	υυ	1	NA NA	NA NA	6	0.0043	1.9	0.43	0.095	-21.99000	8.5 11	1.1	NA NA	NA	NA NA
LT-20	2020	19-Aug-20	Kangislulik	1.1	Lake Trout	176	64.4	0.56		U	1	NA	NA	3	0.0049	1.3	0.26	0.058	-24.16000	9.0	1.2	NA 2 fish and	NA Photo taken mistakenly says	NA
LT-80 LT-81	2020	25-Aug-20 25-Aug-20	Kangislulik Kangislulik	1.2	Lake Trout	678	3919 2468	58.17 30.29	454	F	M I	32.25 NA	371 NA	34 25	0.0037	13	5.7	0.55	-21.54000	12	1.3	invertebrates NA	LT-83 NA	NA NA
LT-82	2020	25-Aug-20	Kangislulik	1.2	Lake Trout	696	3832	31.76	58.84	F	м	NA	NA	40	0.0032	18	5.5	1.2	-20.54000	12	1.1	NA 3 whitefish with	2 encysted parasites	NA
LT-83	2020	25-Aug-20	Kangislulik	1.2	Lake Trout	708	5699	67.46	51.78	F	м	NA	NA	40	0.0035	16	4.5	0.99	-20.32000	12	1.6	combined weight of 1011 g	NA	NA
LT-84	2020	26-Aug-20	Kangislulik	1.4	Lake Trout	408	635	5.43	0.74	F	1	NA	NA	14	0.0044	6.1	1.4	0.31	-19.43000	11	0.94	Invertebrates	NA 14 encysted parasites on	NA
LT-114 LT-85	2020	28-Aug-20 28-Aug-20	whale Tail Whale Tail	1.2	Lake frout	238	156.36	1.37	0.16	U F	1	NA	NA	5	0.0093	6.U 13	1.2	0.26	-23.17000	11	1.2	Scuipin, 53 mm	stomach 8 encysted parasites	NA
LT-88 LT-89	2020 2020	28-Aug-20 28-Aug-20	Whale Tail Whale Tail	1.1	Lake Trout Lake Trout	265 353	231 606	2.17 5.98	0.38	FU	1	NA NA	NA	6 9	0.0079	12 16	1.5 1.8	0.32	-26.71000	11 9.5	1.2	NA NA	NA	NA Fat around stomach
LT-90 LT-102	2020 2020	28-Aug-20 28-Aug-20	Whale Tail Whale Tail	1.1	Lake Trout Lake Trout	357 373	649 704	7.52	0.42	M F	1	NA NA	NA NA	10 9	0.0095	17 8.7	1.8 1.5	0.41	-28.35000 -28.65000	10 10	1.4 1.4	NA NA	15 encysted parasites NA	Fat around intestines NA
LT-117 LT-91	2020 2020	28-Aug-20 28-Aug-20	Whale Tail Whale Tail	1.2	Lake Trout Lake Trout	376 382	776 771	10.98 5.06	92.78 31.21	F	M	36.88 NA	393 NA	14 15	0.0045	7.1	1.6 1.6	0.35	-27.28000	9.8 9.3	1.5	NA NA	NA 18 encysted parasites	NA NA
LT-107 LT-99	2020 2020	28-Aug-20 28-Aug-20	Whale Tail Whale Tail	1.2 1.1	Lake Trout Lake Trout	388 396	958 850	11.41 9.24	122.59 28.15	F	M	43.73 NA	421 NA	14 15	0.0056 0.0063	9.3 7.4	1.7 1.2	0.36	-27.95000 -27.15000	9.8 9.6	1.6 1.4	NA NA	NA 12 encysted parasites	NA NA
LT-97 LT-100	2020 2020	28-Aug-20 28-Aug-20	Whale Tail Whale Tail	1.1	Lake Trout Lake Trout	398 401	795 813	6.65 7.45	23.34 26.34	M	M	NA NA	NA NA	14 21	0.0048 0.0052	6.8 8.9	1.4 1.7	0.31 0.38	-30.55000 -28.74000	9.6 9.3	1.3 1.3	NA NA	NA	NA NA
LT-95 LT-103	2020 2020	28-Aug-20 28-Aug-20	Whale Tail Whale Tail	1.1	Lake Trout Lake Trout	406 411	934 821	19.57 7.91	114.83 0.68	F	M	37.81 NA	380 NA	16 14	0.010	21	2.0	0.45	-27.22000	9.9 11	1.4	NA	2 encysted parasites NA	NA NA
LT-94 LT-96	2020 2020	28-Aug-20 28-Aug-20	Whale Tail Whale Tail	1.1	Lake Trout Lake Trout	420 443	983 1195	14.36 14.82	119.31 197.8	F	M	33.84 33.44	311 300	21 18	0.0092	16 14	1.7 1.5	0.38	-27.51000 -27.36000	9.2 8.9	1.3 1.4	Zooplankton NA	NA NA	NA NA
LT-109 LT-104	2020 2020	28-Aug-20 28-Aug-20	Whale Tail Whale Tail	1.2	Lake Trout Lake Trout	449 456	1202 1142	13.09 20.64	32.25 2.75	M F	M	NA NA	NA NA	26 11	0.0063 0.0057	9.1 10	1.4 1.8	0.32	-27.58000	9.3 12	1.3	Fingernail clams NA	NA 7 encysted parasites	NA NA
LT-113 LT-116	2020 2020	28-Aug-20 28-Aug-20	Whale Tail Whale Tail	1.2	Lake Trout Lake Trout	505 511	1232 1359	10.17 13.89	8.64 1.67	F	1	NA NA	NA NA	17 17	0.0069	14 16	2.0 2.0	0.45	-22.38000 -21.91000	12 12	0.96	NA NA	NA NA	NA NA
LT-110 LT-112	2020 2020	28-Aug-20 28-Aug-20	Whale Tail Whale Tail	1.2	Lake Trout Lake Trout	534 562	1611 1882	10.5 15.08	2.01 17.5	F	I M	NA NA	NA NA	27	0.0086	23 16	2.7	0.59	-21.55000 -21.78000	12	1.1	NA	7 encysted parasites NA	NA NA
LT-118 LT-93	2020 2020	28-Aug-20 28-Aug-20	Whale Tail Whale Tail	1.2	Lake Trout Lake Trout	604 623	2363 2648	27.73 16.14	4.5 70.1	M	M	NA NA	NA	27 25	0.0065	13 36	2.0 3.7	0.44	-22.66000 -23.77000	11 12	1.1	Invertebrates NA	NA 1 encysted parasite	NA NA
LT-92 LT-101	2020 2020	28-Aug-20 28-Aug-20	Whale Tail Whale Tail	1.1	Lake Trout Lake Trout	641 642	2909 3205	24.59 35.91	20.78 82.42	F	M	NA NA	NA NA	31 40	0.0072 0.0069	23 39	3.2 5.7	0.72	-23.29000 -22.49000	12	1.1 1.2	Whitefish, 370g NA	NA 15 encysted parasites	NA NA
LT-115	2020	28-Aug-20	Whale Tail	1.2	Lake Trout	695	4096	36.63	98.1	M	M	NA	NA	36	0.0070	43	6.1	1.3	-22.27000	12	1.2	NA Fich compiler	encysted tapeworm in liver	NA Previous spawn eggs
LT-100	2020	28-Aug-20	Whale Tail	1.2	Lake Trout	801	6040	64.09	214	M	M	NA	NA	37	0.0032	43	5.5	1.0	-24.15000	13	1.0	NA	NA	present in body cavity NA
LT-98 LT-79	2020 2020	28-Aug-20 24-Aug-20	Whale Tail Lake 8	1.1 1.2	Lake Trout Lake Trout	866 150	7410 32.97	48.35 0.3	- 220	M U	M	NA NA	NA NA	38 5	0.0051 0.0034	54 1.3	11 0.38	2.3 0.083	-23.84000	13 9.4	1.1 0.98	NA NA	NA	Operculum frozen NA
LT-78 LT-68	2020 2020	24-Aug-20 24-Aug-20	Lake 8 Lake 8	1.2	Lake Trout Lake Trout	193 204	70.81 96.33	0.73	0.02	UU	1	NA NA	NA NA	6	0.0035	1.1 2.0	0.33	0.072	-20.39000 -19.94000	8.8 9.6	0.99	Invertebrates 4 sculpin	11 encysted parasites NA	NA NA
LT-69 LT-67	2020 2020	24-Aug-20 24-Aug-20	Lake 8 Lake 8	1.1	Lake Trout Lake Trout	212 257	89.56 173.49	0.92	0.11	UU	1	NA NA	NA NA	4	0.0050 0.0044	3.4 3.4	0.69	0.15	-25.63000 -24.76000	11 9.5	0.94	1 sculpin, 39 mm NA	NA 1 encysted parasite	NA NA
LT-64 LT-65	2020 2020	24-Aug-20 24-Aug-20	Lake 8 Lake 8	1.1	Lake Trout Lake Trout	286 289	236 246	1.73 2.59	0.41 0.48	F	1	NA NA	NA NA	8	0.0033 0.0054	2.9 3.2	0.89 0.60	0.20	-26.09000	10 11	1.0	NA NA	NA NA	NA NA
LT-66 LT-76	2020 2020	24-Aug-20 24-Aug-20	Lake 8 Lake 8	1.1 1.2	Lake Trout Lake Trout	296 343	260 383	1.98 3.77	0.44	F		NA NA	NA NA	8 10	0.0034 0.0060	2.4 5.0	0.69	0.15	-24.50000	9.3 10	1.0 0.95	NA NA	NA	NA
LT-52 LT-77	2020 2020	24-Aug-20 24-Aug-20	Lake 8 Lake 8	1.1 1.2	Lake Trout Lake Trout	359 364	505 523	2.89 3.9	0.25	UU		NA NA	NA NA	11 10	0.0046	2.5 4.4	0.55	0.12	-19.93000	9.4 9.9	1.1	NA Dipteran	NA NA	NA NA
LT-63 LT-50	2020 2020	24-Aug-20 24-Aug-20	Lake 8 Lake 8	1.1	Lake Trout Lake Trout	370 430	519 988	4.31 8.83	1.52 21.84	F	I M	NA NA	NA NA	9 14	0.0051 0.0043	3.1 4.2	0.62	0.14 0.21	-24.09000 -24.04000	9.3 9.9	1.0 1.2	Inverterates and fish Invertebrates - full	NA	NA NA
LT-49 LT-75	2020 2020	24-Aug-20 24-Aug-20	Lake 8 Lake 8	1.1 1.2	Lake Trout Lake Trout	437 451	891 891	5.99 8.11	0.87 22.42	F	M	NA NA	NA NA	14 15	0.0040	2.1 6.2	0.52	0.12 0.22	-20.71000	9.5 10	1.1 0.97	NA	6 encysted parasites NA	NA
LT-48 LT-60	2020	24-Aug-20 24-Aug-20	Lake 8 Lake 8	1.1	Lake Trout	458	997 1053	5.82	0.87	F	1	NA	NA	19 23	0.0052	4.6 5.4	0.88	0.19	-24.60000	9.6	1.0	Invertebrates Invertebrates and fish	2 encysted parasites NA	NA
LT-54	2020	24-Aug-20	Lake 8	1.1	Lake Trout	473	1165	14.52	125.13	F	M	22.98	227	22	0.0036	11	3.0	0.65	-25.10000	11	1.1	remains NA	NA	NA
LT-74 LT-51	2020 2020 2020	24-Aug-20 24-Aug-20 24-Aug-20	Lake 8 Lake 8	1.2	Lake Trout	480 482 48°	1266 1132 1142	12.33 9.42 13.09	23.85 40.43 3.04	M	M	NA NA	NA NA	21 13 26	0.0048	5.6 11 10	0.95 2.2 2.6	0.21 0.50 0.57	-17.49000 -23.89000 -24.02000	9.0	1.1 1.0 1.0	200piankton - full NA	NA NA	NA NA

		2020	14 100 10	Edite O	4.4	Earce mout	405	1145	10.00	5.04			14/1	1425	20	0.0040	10	2.0	0.57	24.03000		1.0	1963	19/3	11/5
LT	-70	2020	24-Aug-20	Lake 8	1.2	Lake Trout	510	1290	14.52	8.07	F	I.	NA	NA	19	0.0043	10	2.4	0.53	-22.35000	11	0.97	Whitefish, ~160mm	NA	Developing, 2nd otolith broken, but included
LT	-61	2020	24-Aug-20	Lake 8	1.1	Lake Trout	522	1282	11.93	26.45	F	1	NA	NA	39	0.0039	19	4.8	1.1	-24.44000	12	0.90	NA	NA	Developing
LT	-71	2020	24-Aug-20	Lake 8	1.2	Lake Trout	565	1463	8.89	1.5	м	1	NA	NA	27	0.0026	5.7	2.2	0.48	-18.99000	11	0.81	NA	6 encysted parasites	NA
LT	-72	2020	24-Aug-20	Lake 8	1.2	Lake Trout	614	1862	11.08	3.4	м	1	NA	NA	39	0.0052	25	4.8	1.1	-21.83000	11	0.80	NA	NA	NA
LT	-59	2020	24-Aug-20	Lake 8	1.1	Lake Trout	660	3263	26.78	32.17	м	M	NA	NA	43	0.0038	15	4.1	0.89	-20.97000	12	1.1	NA	NA	NA
LT	-21	2020	20-Aug-20	Lake D1	1&2/1	Lake Trout	876	9530	108.19	350	м	м	NA	NA	35	0.0059	61	10	2.3	-25.23000	13	1.4	Lake Trout, 422mm 696g	NA	NA
LT	-22	2020	20-Aug-20	Lake D1	1&2/1	Lake Trout	831	7750	66.44	305	м	M	NA	NA	37	0.0064	49	7.7	1.7	-23.83000	13	1.4	NA	NA	NA
LT	-23	2020	20-Aug-20	Lake D1	1&2/1	Lake Trout	835	6920	58.95	104.46	F	M	NA	NA	36	0.0050	52	10	2.3	-23.92000	12	1.2	NA	NA	NA
LT	-24	2020	20-Aug-20	Lake D1	1&2/1	Lake Trout	792	5580	55.43	65.59	F	M	NA	NA	50	0.0064	44	6.9	1.5	-22.12000	13	1.1	NA	NA	NA
LT	-25	2020	20-Aug-20	Lake D1	1&2/1	Lake Trout	721	4295	40.61	131.6	м	M	NA	NA	33	0.0058	26	4.4	0.98	-22.06000	13	1.1	NA	NA	NA
LT	-26	2020	20-Aug-20	Lake D1	1&2/1	Lake Trout	592	1854	22.72	14.95	F	-	NA	NA	28	0.0047	28	5.9	1.3	-23.65000	13	0.89	NA	20 encysted parasites	NA
LT	-27	2020	20-Aug-20	Lake D1	1&2/1	Lake Trout	486	1051	8.7	1.34	м	-	NA	NA	13	0.0034	7.7	2.3	0.50	-25.00000	11	0.92	NA	17 encysted parasites	NA
LT	-28	2020	20-Aug-20	Lake D1	1&2/1	Lake Trout	375	613	8.33	1.42	м	-	NA	NA	10	0.0042	4.7	1.1	0.24	-24.61000	8.8	1.2	Invertebrates	21 encysted parasites	NA
LT	-29	2020	20-Aug-20	Lake D1	1&2/1	Lake Trout	435	867	7.01	1.29	м	-	NA	NA	22	0.0040	6.7	1.7	0.37	-23.47000	9.8	1.1	Invertebrates	42 encysted parasites	NA
LT	-30	2020	20-Aug-20	Lake D1	1&2/1	Lake Trout	247	160.12	1.39	0.28	F	I	NA	NA	11	0.0030	3.8	1.3	0.28	-23.80000	10	1.1	4 eggs in coleom, mature eggs. 1 embedded in liver (see photo)	NA	NA

Notes: ¹Kangislulik Lake (KAN) was previously referred to as Mammoth Lake (MAM). ²M = Mature; I = Immature; U = Unknown. DELTs = Deformities, erosion, lesions, or tumours. NA = No data U = Unknown.

Appendix C2. Large-Bodied Fish Mercury Database.

				Canture		Forklengt		Liver Weight	Gonad weight			Fag Sample				Total Mercu	ury in fish tissue		Stable	lsotopes	Condition			
Fish ID	Year	Date	Area '	Method Effort	Species	(mm)	Weight (g)	(g)	(g)	Sex	Maturity ²	Weight (g)	Egg Count	Age (years)	Sample Weight (g)	THg in Sample (ng)	THg (ppm)	THg (ppm ww	C13	N15	(К)	Stomach Contents	DELTs	Comment
LT-31 LT-32 LT-33	2020 2020 2020	20-Aug-20 20-Aug-20 20-Aug-20	Lake D1 Lake D1 Lake D1	1&2/1 1&2/1 1&2/1	Lake Trout Lake Trout Lake Trout	831 728 853	5400 5886 7890	74.5 59.12 56.49	71.32 150.4 77.2	F M F	M M M	NA NA NA	NA NA NA	36 27 36	0.0041 0.0063 0.0038	32 28 51	7.7 4.5 13	1.7 0.99 3.0	-22.25000 -22.21000 -25.16000	13 13 12	0.94 1.5 1.3	NA NA NA	NA NA NA	NA NA NA
LT-34 LT-35	2020 2020 2020	20-Aug-20 20-Aug-20	Lake D1 Lake D1	1&2/1 1&2/1 1&2/1	Lake Trout Lake Trout	638 458	3171 895	47.22 7.9 7.42	22.76 0.52	F U M	I I M	NA NA	NA NA	33 13 22	0.0037	23 8.7	6.1 2.6	1.3 0.56	-20.65000 -24.45000	12 12	1.2 0.93	NA NA	NA NA	NA NA
LT-37 LT-38	2020 2020	20-Aug-20 20-Aug-20	Lake D1 Lake D1 Lake D1	1&2/1 1&2/1	Lake Trout Lake Trout	392 425	666 865	5.33	9.02	F	I M	NA	NA	19 20	0.0043	4.7	1.1 1.8	0.24 0.41	-24.71000 -25.82000	9.7	1.1	Invertebrates NA	18 encysted parasites 25 encysted parasites	NA NA
LT-39 LT-40 LT-41	2020 2020 2020	20-Aug-20 20-Aug-20 20-Aug-20	Lake D1 Lake D1 Lake D1	1&2/1 1&2/1 1&2/1	Lake Trout Lake Trout Lake Trout	281 367 322	261 477 357	3.19 3.77 2.5	0.49 1.39 0.15	F	 	NA NA NA	NA NA NA	10 14 12	0.0039 0.0035 0.0039	2.9 7.1 3.9	0.76 2.0 1.00	0.17 0.45 0.22	-24.15000 -22.85000 -23.82000	10.0 11 9.7	1.2 0.97 1.1	NA NA NA	NA 33 encysted parasites 25 enysted parasites	NA NA NA
LT-42 LT-43	2020 2020	20-Aug-20 20-Aug-20	Lake D1 Lake D1	1&2/1 1&2/1	Lake Trout Lake Trout	311 226	262 140.33	2.32	0.52	FU	1	NA NA	NA NA	9 11	0.0044	4.1	0.93	0.21 0.31	-22.95000 -22.06000	11 11	0.87	NA NA	11 encysted parasites 12 encysted parasites	NA NA
LT-44 LT-45 LT-46	2020 2020 2020	20-Aug-20 20-Aug-20 20-Aug-20	Lake D1 Lake D1 Lake D1	1&2/1 1&2/1 1&2/1	Lake Trout Lake Trout	178 179 169	57.92	0.64	0.03 0.06	0 0 0		NA NA NA	NA NA	5	0.0032	1.8 2.4	0.55	0.12 0.19	-23.68000 -24.26000	9.8 10 10	1.0	NA NA NA	4 encysted parasites 9 encysted parasites	NA NA NA
LT-47 LT-128	2020 2020 2020	20-Aug-20 30-Aug-20	Lake D1 Lake DS1	1&2/1 1 2	Lake Trout	256 269 402	184 199 712	1.84 2.41 7.59	0.06	UU	1	NA NA	NA NA	9 3	0.0033 0.0042 0.0060	3.3 4.0	0.99	0.22 0.21 0.33	-23.43000 -22.82000	11 11	1.1	NA NA	9 encysted parasites 3 encysted parasites 7 encysted parasites	NA NA
LT-121 LT-122	2020	30-Aug-20 30-Aug-20	Lake DS1 Lake DS1	1	Lake Trout Lake Trout	409 416	708 736	6.27	0.94	M F		NA	NA NA	10	0.0040	5.9 9.4	1.5	0.32	-22.61000	10 11	1.0	NA NA	1 encysted parasite NA	NA NA
LT-130 LT-131 LT-136	2020 2020 2020	30-Aug-20 30-Aug-20 30-Aug-20	Lake DS1 Lake DS1 Lake DS1	2 2 2 2	Lake Trout Lake Trout Lake Trout	436 459 462	852 1071 960	6.99 9.62 8.57	0.5 7.19 0.57	F M	1	NA NA NA	NA NA NA	11 12 17	0.0039 0.0054 0.0038	6.8 5.3 6.7	1.8 0.97 1.8	0.39 0.21 0.39	-25.27000 -25.59000 -22.93000	13 11 11	1.0 1.1 0.97	NA NA NA	6 encysted parasites 1 encysted parasite NA	NA NA NA
LT-137 LT-134	2020 2020	30-Aug-20 30-Aug-20	Lake DS1 Lake DS1	2	Lake Trout Lake Trout	470 478	1012 1216	12.09 12.39	0.77 5.61 7.75	M F		NA NA	NA NA	14 14	0.0040	9.2 7.6	2.3 2.1	0.51	-24.83000 -24.13000	12 11	0.98	NA NA	NA NA	NA NA
LT-135 LT-126	2020 2020	30-Aug-20 30-Aug-20 30-Aug-20	Lake DS1 Lake DS1 Lake DS1	2	Lake Trout Lake Trout	483 484	1101 1112	9.88	0.92 18.85	M	I M	NA NA	NA NA	12 16	0.0047 0.0062	6.6 9.2	1.4	0.31 0.33	-23.89000 -23.09000	10	0.98	NA NA	NA NA	NA NA NA
LT-133 LT-127 LT-123	2020 2020 2020	30-Aug-20 30-Aug-20 30-Aug-20	Lake DS1 Lake DS1 Lake DS1	2	Lake Trout Lake Trout Lake Trout	500 514 518	1277 1202 1484	11.58 8.74 22.93	23.34 0.65 134.21	M	M I M	NA NA 36.45	NA NA 348	13 14 14	0.0043 0.0040 0.0044	8.0 9.7 5.9	1.9 2.4 1.3	0.41 0.54 0.30	-24.76000 -22.74000 -26.28000	12 11 12	1.0 0.89 1.1	NA NA	NA 6 encysted parasites NA	NA NA NA
LT-120	2020	30-Aug-20	Lake DS1	1	Lake Trout	545	1725	11.08	1.76	м	1	NA	NA	19	0.0039	15	3.9	0.87	-22.52000	12	1.1	NA	Fluid filled tumor fused to liver and abdominal wall	NA
LT-125 LT-138 LT-140	2020 2020 2020	30-Aug-20 30-Aug-20 30-Aug-20	Lake DS1 Lake DS1 Lake DS1	2	Lake Trout Lake Trout	565	1994 1575	13.01 10.92	4.75 15.56	M	M	NA NA NA	NA NA NA	14 28 20	0.0048 0.0031 0.0034	9.6 17 12	5.6 3.4	0.44 1.2 0.76	-25.77000 -20.98000 -21.34000	12 12 11	1.2	NA NA NA	3 encysted parasites 3 encysted parasites 2 encysted parsites	NA NA NA
LT-124 LT-129	2020 2020 2020	30-Aug-20 30-Aug-20	Lake DS1 Lake DS1	1	Lake Trout	590 600	2352 2641 2594	22.66 38.28 19.98	6.04 334 2.87	M F M	M M	NA 40.09	NA 296	30 26 30	0.0037	21 11 9.8	5.7 3.4 2.8	1.3 0.75 0.62	-22.37000 -20.87000	13 11 12	1.1	NA NA Fish remains	2 encysted parasites 4 encysted parasites	NA NA
LT-141 LT-143	2020 2020	30-Aug-20 30-Aug-20	Lake DS1 Lake DS1	2	Lake Trout Lake Trout	734 745	3706 3340	42.75	33.44 49.09	F	M M	NA	NA NA	49 30	0.0026	38 64	15	3.2 4.0	-22.61000	13 12	0.94	Fish remains Bird feathers	NA NA	NA NA
LT-1 LT-3 LT-4	2023 2023 2023	21-Aug-23 21-Aug-23 21-Aug-23	Lake D1 Lake D1 Lake D1	Gill net 2 Gill net 2 Gill net 2	Lake Trout Lake Trout Lake Trout	505 480 398	1360 638 741	15.01 9.57 8.07	14.19 1.87 0.25	F	1	NA NA	NA NA NA	21 14 14	0.0042 0.0048 0.0067	12 7.5 4.7	2.8 1.6 0.70	0.61 0.34 0.15	NA NA	NA NA	1.1 0.58 1.2	Z RW E	EC EC EC	NA NA NA
LT-5 LT-6	2023 2023	21-Aug-23 21-Aug-23	Lake D1 Lake D1	Gill net 2 Gill net 2	Lake Trout Lake Trout	450 422	1079 809	12.28 8.29	6.61 3.12	F	1	NA NA	NA NA	14	0.0092	9.6 14	1.0	0.23	NA NA	NA NA	1.2	E	EC EC	NA NA
LT-8 LT-11	2023 2023 2023	21-Aug-23 21-Aug-23 21-Aug-23	Lake D1 Lake D1 Lake D1	Gill net 2 Gill net 2 Gill net 2	Lake Trout Lake Trout	193 791	80.76 6580	0.9 98.28	0.18 NA 76.65	U	I M	NA NA NA	NA NA NA	8 31	0.0064 0.0050 0.0081	3.4 35	0.96	0.21 0.15 0.96	NA NA NA	NA NA	1.1	E RW	EC EC	NA NA RW Was 332 grams
LT-12 LT-13	2023 2023 2023	21-Aug-23 21-Aug-23 21-Aug-23	Lake D1 Lake D1	Gill net 1 Gill net 1 Gill net 1	Lake Trout Lake Trout	510 435 457	1253 789 1034	10.28 7.38 7.57	0.61 0.1 6.65	M U F		NA NA	NA NA NA	15 17 13	0.0087 0.0050 0.0072	24 15 9.4	2.8 2.9 1.3	0.61 0.64 0.29	NA NA	NA NA	0.95	E	EC EC EC	NA NA May be maturing
LT-15 LT-16	2023 2023	21-Aug-23 21-Aug-23	Lake D1 Lake D1	Gill net 1 Gill net 1	Lake Trout	429 379	958 534	8.14 5.48	23.03 0.8	M F	M	NA NA	NA NA	17 11	0.011	13 9.0	1.2	0.26	NA NA	NA NA	1.2 0.98	EZ	EC EC	NA NA
LT-17 LT-19 LT-21	2023 2023 2023	21-Aug-23 21-Aug-23 21-Aug-23	Lake D1 Lake D1 Lake D1	Gill net 1 Gill net 1 Gill net 1	Lake Trout Lake Trout	543 586 459	2102	19.39 15.7 21.26	1.94 49.23 114.47	M	M	NA NA 68.69	NA NA 495	26 18	0.0080	16 36 17	4.7	0.44 1.0 0.35	NA NA NA	NA NA	1.1 1.0 1.1	E E Z	EC EC EC	NA May be maturing NA
LT-22 LT-24 LT-25	2023 2023 2023	21-Aug-23 21-Aug-23 21-Aug-23	Lake D1 Lake D1 Lake D1	Gill net 1 Gill net 1 Gill net 1	Lake Trout Lake Trout Lake Trout	454 360 602	974 504 2249	10.36 4.88 16.23	7.23 0.92 18.74	F	I I M	NA NA	NA NA NA	21 12 31	0.011 0.0072 0.0080	12 10 38	1.1 1.4 4.7	0.24 0.31 1.0	NA NA	NA NA	1.0 1.1 1.0	E	EC EC EC	May be maturing NA NA
LT-26 LT-27	2023 2023	21-Aug-23 21-Aug-23	Lake D1 Lake D1	Gill net 1 Gill net 1	Lake Trout Lake Trout	637 447	2738 865	17.39 7.11	30.92 4.21	M F	M	NA NA	NA NA	32 19	0.0078	41 8.8	5.3 2.0	1.2 0.44	NA NA	NA NA	1.1 0.97	E	EC EC	NA NA
LT-28	2023	21-Aug-23	Lake D1	Gill net 1	Lake Trout	861	8660	118.58	134.39 203	F	м	NA	NA	39	0.0096	72	7.5	1.6	NA NA	NA	1.4	LT NS AND	EC	eggs NA
LT-31 LT-32	2023	21-Aug-23 21-Aug-23	Lake D1 Lake D1	Gill net 1 Gill net 1	Lake Trout	774	5570	56.76	69.38 3.36	F	M	NA	NA	40	0.010	57	5.5	1.2	NA	NA	1.2	UNIDENTIFIED FISH E	EC	NA
LT-65 LT-66	2023 2023	21-Aug-23 21-Aug-23	Lake 8 Lake 8	Gill net 1 Gill net 1	Lake Trout Lake Trout	464 498	1025 1167	6.81 10.34	21.13 14.69	M	M	NA NA	NA NA	16 32	0.0062	4.1 23	0.66	0.15	NA NA	NA NA	1.0	Z,I Z,I	EC EC	NA NA
LT-67 LT-68 LT-69	2023 2023 2023	21-Aug-23 21-Aug-23 21-Aug-23	Lake 8 Lake 8 Lake 8	Gill net 1 Gill net 1 Gill net 1	Lake Trout Lake Trout Lake Trout	407 405	1046 845 768	9.55 9.36	13.75 5.93 3.36	F	1 1	NA NA	NA NA NA	34 14 14	0.0060 0.0067 0.0067	27 3.2 3.5	4.5 0.47 0.52	0.99 0.10 0.11	NA NA NA	NA NA NA	0.84 1.3 1.2	Z,I Z Z	EC EC EC	NA NA NA
LT-70 LT-71	2023 2023 2023	21-Aug-23 21-Aug-23	Lake 8 Lake 8	Gill net 1 Gill net 1	Lake Trout	439 392 261	893 664 173 18	5.5 6.14	23.65 0.45	MM	M	NA NA	NA NA	17 10	0.011 0.0058 0.0061	8.4 4.7 5.0	0.79 0.81 0.82	0.17 0.18 0.18	NA NA	NA NA	1.1 1.1	1 SC Z,I F	EC EC EC	NA NA
LT-73 LT-74	2023 2023	21-Aug-23 21-Aug-23	Lake 8 Lake 8	Gill net 1 Gill net 1	Lake Trout Lake Trout	233 241	127.38 147.99	0.66	NA 0.31	U		NA NA	NA	7	0.0057	2.0 2.4	0.34	0.076	NA NA	NA	1.0	Z Z	EC EC	NA NA
LT-75 LT-76 LT-81	2023 2023 2023	21-Aug-23 21-Aug-23 21-Aug-23	Lake 8 Lake 8 Lake 8	Gill net 1 Gill net 1 Gill net 2	Lake Trout Lake Trout	200 486	83.45 1170	0.57 0.74 7.34	0.07 NA 23.46	UM	I M	NA NA NA	NA NA NA	3 3 29	0.0055 0.0077 0.0069	0.97 1.5 13	0.18 0.20 1.9	0.039 0.044 0.42	NA NA NA	NA NA NA	1.0	Z Z I	EC NA	NA NA NA
LT-82 LT-83	2023 2023 2023	21-Aug-23 21-Aug-23 21-Aug-23	Lake 8 Lake 8	Gill net 2 Gill net 2 Gill net 2	Lake Trout Lake Trout	501 439 496	1416 977 1233	14.55 7.85 11.69	23.25 6.62 15.83	F	M I M	NA NA	NA NA	19 15	0.0091 0.0093 0.0067	9.4 6.2 4.3	1.0 0.67 0.63	0.23 0.15 0.14	NA NA	NA NA	1.1 1.2	Z,I Z,I 7.1	NA EC EC	NA NA
LT-85 LT-86	2023 2023	21-Aug-23 21-Aug-23	Lake 8 Lake 8	Gill net 2 Gill net 2	Lake Trout Lake Trout	423 454	880 1052	12.7 10.02	2.83	F M	 	NA NA	NA NA	11 13	0.0066	4.6 9.4	0.70	0.15	NA NA	NA NA	1.2	Z,I Z,I	EC NA	NA NA
LT-88 LT-89	2023 2023	21-Aug-23 21-Aug-23 21-Aug-23	Lake 8 Lake 8	Gill net 2 Gill net 2 Gill net 2	Lake Trout Lake Trout	401 479 487	1170 1095	9.63	28.97 14.42	M	M	NA NA	NA NA	22 31	0.0063	10	1.6	0.35	NA NA	NA	1.1 0.95	Z,1 Z,1 Z,1	NA EC	NA NA
LT-90	2023	21-Aug-23	Lake 8	Gill net 2	Lake Trout	512	1510	13.75	16.15	F	м	NA	NA	22	0.0062	9.1	1.5	0.32	NA	NA	1.1	LAKE TROUT AND UNIDENTIFIED SMALL FISH	EC	NA
LT-91 LT-92	2023 2023 2023	21-Aug-23 21-Aug-23	Lake 8 Lake 8	Gill net 2 Gill net 2 Gill net 2	Lake Trout Lake Trout	377 520 240	565 1304 140.27	8.54 12.54 1.31	0.41 7.84	M F	I M	NA NA	NA NA	14 17	0.0053 0.0067 0.0090	3.9 10 5.3	0.74	0.16 0.34 0.13	NA NA	NA NA	1.1 0.93	Z	EC EC	NA NA
LT-96 LT-97	2023 2023	24-Aug-23 24-Aug-23	Whale Tail Whale Tail	Gill net 2 Gill net 2	Lake Trout Lake Trout	635 440	2334 962	24.49 14.37	18.81 118.12	F	M	NA 40.31	NA 407	21 19	0.0047 0.0063	55 36	12 5.6	2.6	NA	NA	0.91	E	NA EC	NA NA
LT-98 LT-101	2023	24-Aug-23 24-Aug-23	Whale Tail Whale Tail	Gill net 2 Gill net 2	Lake Trout	445	1058	9.78	41.87	F	м	NA 39.98	NA 337	17	0.0068	35	4.3	1.0	NA	NA	1.2	Z FINGERNAIL CLAMS AND Z	EC	NA
LT-103	2023	24-Aug-23	Whale Tail	Gill net 2	Lake Trout	456	1143	12.04	30.11	м	M	NA	NA	14	0.0091	29	3.2	0.71	NA	NA	1.2	FINGERNAIL CLAMS AND Z 7	EC	NA
LT-105 LT-106	2023 2023	24-Aug-23 24-Aug-23	Whale Tail Whale Tail	Gill net 2 Gill net 2	Lake Trout Lake Trout	350	486 430	4.75	0.86	F		NA	NA NA	8	0.0062	25 37	4.1 4.7	0.90	NA	NA	1.1	E Z AND 1 NINESPINE	NA EC	NA NA
LT-108 LT-110 LT-111	2023 2023 2023	24-Aug-23 24-Aug-23 24-Aug-23	Whale Tail Whale Tail Whale Tail	Gill net 2 Gill net 2 Gill net 2	Lake Trout Lake Trout Lake Trout	282 250 241	264 192 146	2.28 1.89 0.94	0.09 0.21 NA	F	1	NA NA	NA NA NA	5	0.0081 0.0064 0.0053	33 27 25	4.1 4.3 4.7	0.91 0.95 1.0	NA NA NA	NA NA NA	1.2 1.2 1.0	E Z E	EC EC EC	NA NA NA
LT-113	2023	24-Aug-23	Whale Tail	Gill net 2	Lake Trout	750	5130	55.1	126.62	м	м	NA	NA	34	0.011	98	9.1	2.0	NA	NA	1.2	E	EC	Tag#nsc115941, fat around intestines and along the back
LT-114 LT-115	2023 2023	24-Aug-23 24-Aug-23	Whale Tail Whale Tail	Gill net 1 Gill net 1	Lake Trout Lake Trout	469 420	1057 943	9.57 8.2	3.41 23.52	F	M	NA NA	NA NA	13 11	0.0071	44 43	6.1 4.1	1.4	NA NA	NA NA	1.0	E Z	EC EC	NA NA
LT-117	2023	24-Aug-23 24-Aug-23	Whale Tail Whale Tail	Gill net 1 Gill net 1	Lake Trout	561	2245	35.63	306	F	M	51.6 NA	388 NA	8	0.0099	89	9.0	2.0	NA	NA	1.3	E UNIDENTIFIED FISH	NA	NA
LT-120 LT-121	2023 2023	24-Aug-23 24-Aug-23	Whale Tail Whale Tail	Gill net 1 Gill net 1	Lake Trout Lake Trout	435 385	975 569	11.66 4.09	136.82 0.45	F	M	50.37 NA	514 NA	14 5	0.0077	47 49	6.1 7.0	1.3	NA NA	NA NA	1.2	I NINESPINE	EC EC	NA NA
LT-124 LT-128	2023 2023 2023	24-Aug-23 24-Aug-23 24-Aug-23	Whale Tail Whale Tail Whale Tail	Gill net 1 Gill net 1 Gill net 1	Lake Trout Lake Trout	255 878 731	186 8760 5210	1.82 57.16 61.91	NA 286 70.04	U M F	I M M	NA NA	NA NA	4 42 19	0.0049 0.012 0.0074	18 134 75	3.6 11 10	0.79 2.5 2.2	NA NA	NA NA	1.1 1.3	Z E F	EC EC	NA NA
LT-130 LT-135	2023 2023	24-Aug-23 24-Aug-23	Whale Tail Whale Tail	Gill net 1 Gill net 1	Lake Trout Lake Trout	305 225	318 117	2.96 1.26	NA NA	U U U	1	NA NA	NA NA	7	0.0046	24 26	5.3 4.2	1.2	NA NA	NA	1.1	Z Z	EC EC	NA NA
LT-34 LT-35	2023 2023 2023	19-Aug-23 19-Aug-23	Kangislulik Kangislulik	Gill net 2 Gill net 2	Lake Trout Lake Trout	396 296	655	4.99 2.68	21.74 0.25	M F	M	NA NA NA	NA NA NA	3	0.0082	10 5.3	0.99 0.51	0.93	NA	NA.	1.1	I Z	EC	NA
LT-36 LT-37 LT-38	2023 2023 2023	19-Aug-23 19-Aug-23 19-Aug-23	Kangislulik Kangislulik Kangislulik	Gill net 2 Gill net 2 Gill net 2	Lake Trout Lake Trout Lake Trout	254 243 222	196 179 111	2.47 1.53 1.24	0.17 0.02 0.03	U U U	1	NA NA NA	NA NA NA		0.012 0.013 0.0097	4.4 4.4 7.8	0.42 0.45 0.63	0.093 0.099 0.14			1.2 1.2 1.0	E Z E	EC	
LT-39 LT-40	2023	19-Aug-23	Kangislulik Kangislulik	Gill net 2	Lake Trout	187 876	62.25	0.46	993	U	I M	NA 57.79	NA 512		0.010	6.3 49	0.59	0.13		<u> </u>	0.95	E	EC	SECOND FECUNDITY 56.45 GRAMS AND
LT-41	2023	19-Aug-23	Kangislulik	Gill net 1	Lake Trout	564	2085	27.09	22.94	F	M	NA	NA		0.0095	14	1.3	0.28		-	1.2	E	PA	509 EGGS
LT-42 LT-43 LT-44	2023 2023 2023	19-Aug-23 19-Aug-23 19-Aug-23	Kangislulik Kangislulik Kangislulik	Gill net 1 Gill net 1 Gill net 1	Lake Trout Lake Trout Lake Trout	382 390 393	550 608 637	4.15 3.3 4.01	0.26 0.39 14.73	M	 	NA NA NA	NA NA NA		0.011 0.010 0.0095	10 8.0 8.7	0.90 0.84 0.76	0.20 0.18 0.17		E	0.99 1.0 1.0	E 	EC EC EC	
LT-45 LT-46	2023 2023 2023	19-Aug-23 19-Aug-23	Kangislulik Kangislulik Kangislulik	Gill net 1 Gill net 1	Lake Trout Lake Trout	370 378	562 558	4.25 3.13 7.22	20.63 9.96	M F	M	NA NA	NA NA		0.011	7.9 8.8	0.85	0.19 0.23 0.22			1.1	 	EC EC	
LT-49 LT-50	2023	19-Aug-23 19-Aug-23	Kangislulik Kangislulik	Gill net 1 Gill net 1	Lake Trout	415	710	4.63	6.99 11.85	F	I M	NA	NA		0.0083	12 6.1	1.0	0.23			0.99	E	EC EC	
LT-51 LT-53 LT-56	2023 2023 2023	19-Aug-23 19-Aug-23 19-Aug-23	Kangislulik Kangislulik Kangislulik	Gill net 1 Gill net 1 Gill net 1	Lake Trout Lake Trout Lake Trout	550 426 355	1504 732 520	9.72 4.93 2.94	10.79 3.35 10.64	F F M	I I M	NA NA NA	NA NA NA		0.0096 0.012 0.010	28 9.0 8.8	2.7 0.87 0.78	0.60 0.19 0.17		E	0.90 0.95 1.2	E	EC EC EC	
LT-57 LT-58 LT-59	2023 2023 2023	19-Aug-23 19-Aug-23 19-Aug-23	Kangislulik Kangislulik Kangislulik	Gill net 1 Gill net 1 Gill net 1	Lake Trout Lake Trout Lake Trout	340 374 299	484 534 258	3.41 3.38 2.12	2.08 10.64 0.43	F	I M I	NA NA NA	NA NA NA	<u> </u>	0.012 0.010 0.011	5.6 10 8.2	0.55 0.90 0.81	0.12 0.20 0.18		<u> </u>	1.2 1.0 0.97	I, 1 SCULPIN Z E	EC EC EC	
LT-60 LT-61	2023 2023	19-Aug-23 19-Aug-23	Kangislulik Kangislulik	Gill net 1 Gill net 1	Lake Trout Lake Trout	286 210	290 96.86	2.83 0.93	0.13	F	1	NA NA	NA NA		0.010	4.1 5.7	0.43	0.095			1.2 1.0	Z E	EC EC	

LT-62	2023	19-Aug-23	Kangislulik	Gill net 1	Lake Trout	231	125.77	0.75	U	1	NA	NA	0.011	7.7	0.62	0.14	1.0	REMAINS	EC	

APPENDIX D LENGTH-MERCURY RELATIONSHIPS FOR LARGE-BODIED FISH

TABLE OF CONTENTS

D.1.	INTRODUCTION	1
D.2.	METHODS	2
D.3.	RESULTS	3
D.4.	REFERENCES	3
TABLES		4
FIGURES		7

LIST OF TABLES

Table D-1. Results for length-mercury relationships in Lake Trout sampled from Whale Tail area lakes	
since 2015 (estimate ± standard error are given for intercepts and slopes)	. 5
Table D-2. Estimated tissue mercury concentrations for 550-mm Lake Trout in Whale Tail area lakes	
since 2015	. 6

LIST OF FIGURES

Figure D-1. Tissue mercury concentrations in Lake Trout from Whale Tail study area lakes since 2015	8
Figure D-2. Overall length-mercury plots for Lake Trout showing transformation options.	9
Figure D-3. Length-mercury plots showing model fits (and $\pm 95\%$ confidence intervals) for Lake Trout	
sampled from Whale Tail area lakes since 20151	.0
D.1. INTRODUCTION

The mercury monitoring program (MMP) is designed based on the assumption that fish catch is similar in terms of size distribution for a given species at sampling events (i.e., each combination of area and year). There are, however, often differences in the size distribution of sampled populations and/or in the size distribution of captured fish across sampling events. As mercury concentrations are often positively related to fish size, basing data analysis on mean mercury concentrations can introduce sizerelated bias to the interpretation of temporal and spatial differences/changes in fish mercury concentrations. Modelling length-mercury relationships facilitates removing potential effects related to catching larger or smaller fish across temporal and spatial scales. It also enables estimating mercury concentrations at various "standardized" sizes¹, providing a more intuitive means for tracking differences and/or changes across space and time.

As described in **Section 5** of the main report and in **Appendix C2**, the fish mercury dataset is comprised of fish mercury results for Lake Trout caught in Whale Tail study area lakes since 2015. The following sections present details on the methods and results of statistical analyses conducted to estimate fish mercury concentrations for 550 mm Lake Trout sampled from Whale Tail study area lakes (i.e., Whale Tail, Kangislulik, Lake DS1, Lake D1, Lake 8) in 2015, 2018, 2020, and 2023.

Length-mercury relationships in Lake Trout were fit using a combination of models in Appendix D of the 2021 MMP report (Azimuth, 2022). The models incorporated various levels of complexity to investigate differences and/or changes in mercury concentrations in Lake Trout across sampling areas and/or years. The best model was selected based on Akaike's Information Criterion corrected for small sample sizes (AICc). Then, the selected model was used to estimate mercury concentrations in Lake Trout at a standardized size of 550 mm fork length (FL) for each combination of sampling area and year. The mercury concentration estimates were compared qualitatively between sampling areas and years to reflect potential differences.

Substantially different mercury concentrations were observed for Lake Trout collected in the 2023 sampling campaign, especially from Whale Tail area. Even the best model that was used to estimate the

¹ Historically, fish mercury concentrations were compared among sampled populations or sampling events using species-specific means (or averages). The major limitation of that approach is a bias in the calculated mean, which is associated with random differences in the size of captured fish as mercury concentrations are often positively related to fish size due to bioaccumulation. This potential bias is avoided by using length-mercury relationship to estimate mercury concentrations for specific sizes of fish (the standardized sizes) and comparing them species-specifically to provide insight regarding potential change and/or differences.

2020 mercury concentrations in 550 mm Lake Trout failed to satisfactorily fit and describe the 2023 data. To ensure that models adequately characterize length-mercury relationships in the new dataset, mercury concentrations were fit against fish length using area- and year-specific models in 2023. Similar to previous years, mercury concentrations were then estimated for Lake Trout of standardized size of 550 mm FL for each combination of sampling area and year, which were eventually compared qualitatively to reflect potential differences.

D.2. METHODS

According to data availability (see **Section 5**, **Table 5-2** of the main report), a total of 12 models were fit, each representing a combination of sampling area and year, including:

- Whale Tail (2015, 2018, 2020, and 2023),
- Kangislulik (2015, 2020, and 2023),
- Lake DS1 (2020),
- Lake D1 (2020 and 2023), and
- Lake 8 (2018, 2020, and 2023).

The following steps provide detailed information about the statistical analyses:

- Coarse Assessment of Outliers Data were first visually assessed to determine coarse outliers. Datapoints that appeared substantially outside the boundaries in an overall plot depicting relationship between mercury concentrations and fish length were double-checked to ensure that there were no errors in data entry.
- **Transformations** Length-mercury relationships were first plotted using all data and a combination of transformations (Y axis, X axis, and/or both) to determine the most suitable transformation for linear modelling.
- Length-Mercury Models The structure of area- and year-specific models was THg ~ LC, where THg was concentrations of total mercury in Lake Trout in mg/kg wet weight and LC was fish length centered to 550 mm FL. Note that most of the mercury analyzed and reported as THg in fish is generally assumed to be methylmercury (MeHg). Also, centering fish length to a standardized size allows direct interpretation of the regression coefficients of the models.
- Formal Assessment of Outliers The models were used to formally identify 'high residual' (studentized residuals ≥ 4) and/or 'high leverage' (Cook's distance ≥ 0.5) outliers. Any outliers were removed from the data and model fitting (previous step) was repeated to reflect any

potential changes in parameter estimation. If no outlier(s) was identified, the analysis proceeded to the next step.

Estimates of Mercury Concentrations – The models were eventually used to provide estimates (± 95% confidence intervals) of mercury concentrations in Lake Trout length centered to 550 mm FL for each combination of sampling area and year. Estimated mercury concentrations were plotted to help identify changes using spatial and temporal comparisons.

D.3. **RESULTS**

No outliers were identified during the coarse assessment of outliers. Lake Trout mercury concentrations are shown by lake and year in **Figure D-1**.

Modelling was performed with log₁₀-transformed data of mercury concentrations and untransformed data of fish length (centered to standard size of 550 mm FL); this combination produced the most linear result for the data (**Figure D-2**).

Model fit results are provided in **Table D-1**. The fitted models generally showed strong ($R^2 = 0.60-0.96$) and statistically significant ($P \le 0.05$) relationships between fork length and mercury concentrations. Visual inspection of model diagnostics showed no issues in terms of assumptions for linear modelling and no outliers were identified in the formal screening. Final model fits for each lake/year combination are shown relative to the underlying data in **Figure D-3**. These fits were used to estimate the mercury concentrations (and ±95% confidence intervals) for a 550-mm Lake Trout (**Table D-2**).

D.4. **REFERENCES**

Azimuth. 2022. 2021 Mercury Monitoring Program – Whale Tail Pit Project. Report prepared by Azimuth Consulting Group, Vancouver, BC for Agnico Eagle Mines Ltd., Baker Lake, NU. March 2022.

TABLES

Area	Year	Intercept	Slope	DF	F	P-value ¹	R ²
Whale Tail	2023	0.178±0.0235	0.0008±0.0001	1, 23	44.2	< 0.0001	0.658
	2020	-0.212±0.0218	0.0015±0.0001	1, 28	128	< 0.0001	0.821
	2018	-0.22±0.0627	0.0022±0.0003	1, 13	61.4	< 0.0001	0.825
	2015	-0.248±0.0317	0.0022±0.0002	1, 19	128	< 0.0001	0.871
Kangislulik	2020	-0.332±0.0234	0.0023±0.0001	1, 23	490	< 0.0001	0.955
	2015	-0.328±0.0377	0.0024±0.0002	1, 23	178	< 0.0001	0.886
	2023	-0.4677±0.0322	0.0015±0.0001	1, 23	112	< 0.0001	0.83
Lake DS1	2020	-0.155±0.0354	0.0027±0.0003	1, 22	68.6	< 0.0001	0.757
Lake D1	2023	-0.259±0.0303	0.0017±0.0002	1, 23	86.5	< 0.0001	0.79
	2020	-0.178±0.0237	0.0017±0.0001	1, 25	290	< 0.0001	0.921
Lake 8	2023	-0.374±0.0741	0.0024±0.0004	1, 23	33.9	< 0.0001	0.596
	2020	-0.29±0.0552	0.0022±0.0003	1, 24	61.5	< 0.0001	0.719
	2018	-0.228±0.0896	0.0025±0.0005	1,6	24.6	0.0026	0.804

Table D-1. Results for length-mercury relationships in Lake Trout sampled from Whale Tail area lakes
since 2015 (estimate \pm standard error are given for intercepts and slopes).

1. Bolded values are statistically significant (p-values < 0.001).

DF = degrees of freedom.

F = F value.

Table D-2. Estimated tissue mercury concentrations for 550-mm Lake Trout in Whale Tail area lakes since 2015.

Area	Year	Estimated total mercury concentrations (mg/kg ww)				
		Mean	Lower 95% Cl	Upper 95% Cl		
	2023	1.51	1.29	1.76		
Whale Tail	2020	0.613	0.540	0.696		
whate fail	2018	0.602	0.472	0.769		
	2015	0.565	0.481	0.664		
	2020	0.341	0.277	0.419		
Kangislulik	2015	0.466	0.407	0.534		
	2023	0.470	0.356	0.621		
Lake DS1	2020	0.700	0.609	0.805		
Laka D1	2023	0.550	0.483	0.627		
Lake DI	2020	0.664	0.585	0.753		
	2023	0.422	0.340	0.524		
Lake 8	2020	0.513	0.424	0.621		
	2018	0.592	0.438	0.800		

Notes:

CI = Confidence interval

FIGURES

Figure D-1. Tissue mercury concentrations in Lake Trout from Whale Tail study area lakes since 2015.

Note: The total mercury concentrations presented in this figure are not based on 550-mm Lake Trout.

Figure D-2. Overall length-mercury plots for Lake Trout showing transformation options.

Figure D-3. Length-mercury plots showing model fits (and ±95% confidence intervals) for Lake Trout sampled from Whale Tail area lakes since 2015.

AreaType • Impact • Control • Reference

Total Length (mm)

