Appendix 37

Whale Tail 2023 Fish Habitat Offsets Monitoring Report

MEADOWBANK COMPLEX

2023 FISH HABITAT OFFSETS MONITORING REPORT

In Accordance with

DFO Fisheries Act Authorization 16-HCAA-00370

and

DFO Fisheries Act Authorization 20-HCAA-00275

Prepared by: Agnico Eagle Mines Limited – Meadowbank Complex

March, 2024

EXECUTIVE SUMMARY

In accordance with Fisheries Act Authorizations 16-HCAA-00370 and 20-HCAA-00275, Agnico Eagle maintains a Fish Habitat Offsets Monitoring Plan (FHOMP; Version 2, July, 2021 – Agnico Eagle, 2021¹) for the Whale Tail Mine. This Plan was developed to determine whether fish habitat offsetting described in the *Whale Tail Pit - Fish Habitat Offsetting Plan* (C. Portt and Associates, 2018a) and the *Whale Tail Pit Expansion Project Fish Habitat Offsetting Plan* (ERM, 2020) is ultimately constructed and functioning as intended.

According to this Plan, monitoring is conducted under the pre-offsetting ecological monitoring program from 2021 through 2023. Along with data collected between 2018 and 2020 through other existing research and compliance monitoring studies, this program is intended to demonstrate whether terrestrial flooding that was temporarily required for operational purposes will provide suitable habitat for fish long-term. Permanently raised water levels are accepted offsets under both the 2018 and 2020 offsetting plans for the Whale Tail Mine, and flood zone assessment prior to permanent sill construction is required under conditions of the associated Fisheries Act Authorization 20-HCAA-00275.

In 2023, FHOMP field assessments included: flood zone water level monitoring, water quality data collected through the Core Receiving Environment Monitoring Plan (CREMP) plus supplemental stations, analysis of periphyton growth using artificial substrate samplers, periphyton visual surveys, small-bodied fish population assessments by shoreline electrofishing, underwater camera surveys in high-potential lake trout spawning areas, and gillnet surveys for evaluation of large-bodied fish populations. A summary of FHOMP methods and results to date is presented here, with further analysis in the report *Impact Analysis of Fish Habitat from Flooding*, to be provided to DFO under separate cover in 2024 in fulfillment of Condition 5.3.1 of FAA 20-HCAA-00275.

Briefly, CREMP results through 2023 continue to indicate increased concentrations of some water quality parameters (especially nutrients) in the Whale Tail flood zone compared to baseline and reference conditions, as predicted in the 2018 FEIS Addendum (Agnico Eagle, 2018b). However, measured concentrations do not exceed effects-based thresholds for impacts to aquatic life. Though some periphyton sampler loss occurred in 2022, modifications eliminated this problem in 2023, and it is evident that seasonal periphyton growth on this artificial substrate is greater in flood zone lakes compared to reference lakes. These observations are in line with 2018 FEIS Addendum predictions for increased nutrient concentrations and primary productivity in flood zone lakes, as well as trends in phytoplankton biomass measured to date through the CREMP program. Periphyton visual surveys identified a wide range of periphyton cover conditions across both flood zone and reference lakes, from no coverage to >75% coverage, without a clear relationship to flood status. Where present,

¹ Version 2 of the FHOMP was developed to include requirements of both Whale Tail site FAAs (16-HCAA-00370 and 20-HCAA-00275) and was submitted to DFO in July, 2021. No comment from DFO has yet been received but Agnico has undertaken monitoring and reporting according to this version starting in 2021 since no monitoring is scheduled under Version 1 until 2026.

periphyton thickness, evenness, and texture was visually estimated to be similar to or approaching that of reference areas. Electrofishing studies have identified the presence of small-bodied fish populations in newly created shoreline habitat at catch rates and size ranges that appear similar to reference areas. Finally, underwater video and gillnet surveys confirmed continued use of deeper water habitat by large-bodied fish at rates no lower than reference areas.

In addition to flooding and other constructed habitat offsetting features, a portion of offsetting for Whale Tail Mine is provided through a suite of complementary measures (research projects). No physical monitoring is conducted in relation to research projects. However, progress monitoring is conducted to document annual activities, and results are summarized here to determine when criteria for success have been met.

Six research studies form the complementary measures for Whale Tail Mine offsetting. Due to delays that were largely as a result of the COVID-19 pandemic, some study periods have been extended, as indicated in Table 1 below. In 2021, Study 4: *Arctic Grayling Occupancy Modelling* was completed and criteria for success were met with publication of a peer-reviewed manuscript, as described in the 2021 Fish Habitat Offsets Monitoring Report.

Table 1. Whale Tail Mine complementary measures (research projects). *Extended due to
COVID or other delays (estimated termination dates as of Dec. 2023 shown).

Study	Lead Researcher	Study Period
Study 1: Assessment of changes in aquatic productivity and fish populations due to flooding of Whale Tail South and downstream lakes during operations	H. Swanson	2018 – 2024*
Study 2: Assessment of impacts of the Baker Lake wastewater outflow on aquatic systems including fish and fish habitat	H. Swanson	2019 – 2025/2026*
Study 3: Literature review and field validation of northern lake fish habitat preferences	S. Doka	2018 – 2024*
Study 4: Arctic Grayling occupancy modelling (COMPLETE)	H. Swanson	2018 – 2021
Study 5: End pit lake habitat use	TBD	2027 – 2035 (est.)
Study 6: eDNA methods development	J. Stetefeld	2018 – 2023/2024

TABLE OF CONTENTS

EXECU	TIVE SU	MMARY	I
SECTIC	DN 1 • 1	NTRODUCTION	1
1.1	Backgro	und	1
1.2	•	es	
1.3	Summar	y of Offsetting Features	5
	1.3.1	Constructed Offsets	
	1.3.2	Complementary Measures	14
1.4	Schedule	e For Monitoring	14
SECTIC	DN 2 •	MONITORING METHODS	15
2.1	Construc	ted Offsets	15
	2.1.1	Physical Structure Monitoring	15
	2.1.2	Ecological Monitoring	16
2.2	Compler	nentary Measures	26
SECTIC	DN 3 •	RESULTS & DISCUSSION	26
3.1	Construc	ted Offsets	
	3.1.1	Physical Structure Monitoring (Water Levels)	
	3.1.2	Ecological Monitoring	28
3.2	•	nentary Measures	
	3.2.1	Activities of the MFRAG	
	3.2.2	Study 1 - Assessment of Changes in Aquatic Productivity and Fish Populations D	
	3.2.3	ng (H. Swanson) Study 2 – Assessment of Impacts of the Baker Lake Wastewater Outflow on Fish	50
		vity and Fish Habitat (H. Swanson)	
	3.2.4	Study 3 – Literature Review and Field Validation of Northern Lake Fish Habitat	02
	-	ces (S. Doka)	55
	3.2.5	Study 4 – Arctic Grayling Occupancy Modelling (H. Swanson)	
	3.2.6	Study 5 – End-pit Lake Habitat Suitability Assessment	
	3.2.7	Study 6 – eDNA Methods Development (J. Stetefeld and M. McDougall)	57
SECTIC	DN 4 •	SUMMARY AND EVALUATION OF SUCCESS	59
4.1	Construc	ted Offsets	59
4.2	Compler	nentary Measures	59
SECTIC	DN 5 •	NEXT STEPS	62
5.1	Construc	ted Offsets	62
5.2		nentary Measures	
REFER	ENCES.		63

LIST OF TABLES

Table 1. Whale Tail Mine complementary measures (research projects). *Extended due to COVID or other delays (estimated termination dates as of Dec. 2023 shown)	
Table 2. General schedule of assessments conducted under the pre-offsetting ecological monitoring program for the Whale Tail site.	
Table 3. Summary of shoreline electrofishing effort (total shocking time across species) under the	15
FHOMP pre-offsetting ecological monitoring program for the Whale Tail Mine	22
Table 4. Underwater camera methods.	
Table 5. 2023 gillnet study locations, net set times, and water depths.	
Table 6. Periphyton sampling dates and chlorophyll-a results for artificial substrate samplers	
Table 7. Periphyton visual surveys – summary of dominant results for flood zone and reference	55
aitan in 2022 and 2022	
Table 8. Summary of results for periphyton visual surveys in WTS during the baseline period	
(2015) and post-flood (2022 and 2023).	38
Table 9. Total catch of Ninespine Stickleback, Slimy Sculpin and other fish by-catch from	
shoreline electrofishing. Note: Results for Kangislulik (Mammoth) Lake are provided here	
for reference, but are not specifically evaluated as part of the FHOMP study	39
Table 10. Underwater video camera survey dates and number of fish observations (*multiple fish	00
noted in at least one observation). All video was recorded during daylight hours. Cameras	
were generally set in one location in WTS (UC 1 to 3) and one location in A20 ((UC 4 to	
9) see Figure 1).	. 44
Table 11. Measured water temperatures at approximately 2 m depth in flood zone lakes WTS and	
A20 in August and September, 2023 (from Azimuth, 2024)	
Table 12. Gillnet soak times, total catch, and calculated CPUE (fish/h). Note: Results for	
Kangislulik (Mammoth) Lake are indicated here for reference, but are not specifically	
included in the FHOMP analysis.	45
Table 13. Average, maximum, and minimum length, weight, and Fulton's condition factor (K) for	-
lake trout caught through gillnetting in 2023.	47
Table 14. Sex, maturity, and current-year reproduction among lake trout caught through gillnetting	
in 2023	47
Table 15. Target study publication dates and publication or presentation references. *Current as	
of December 2023.	60

LIST OF FIGURES

Figure 1. 2023 FHOMP monitoring locations at the Whale Tail Mine.	7
Figure 2. 2023 FHOMP monitoring locations in Inuggugayualik Lake.	. 13
Figure 3. Artificial substrate sampler for periphyton study in 2022.	
Figure 4. Artificial substrate periphyton sampler in-situ (2023).	
Figure 5. Measured and predicted water levels in the Whale Tail South flood zone (point measurement by GPS survey, 3-h interval by piezometer, or modeled monthly mean, as indicated). Predicted water levels are for Whale Tail Lake from FEIS Addendum for the Whale Tail Pit Expansion Project, Appendix 6-O, Table D-14 (Agnico Eagle, 2018b)	
Figure 6. Nutrient parameters measured in Whale Tail Mine area lakes since 2014. Blue dashed line indicates FEIS Addendum model prediction. Figure from Azimuth (2024). Flood zone	. 30
Figure 7. Total phytoplankton biomass (mg/m ³) from the Whale Tail Mine study lakes since 2014. Figure from Azimuth (2024). Flood zone lakes are WTS and A20	. 31
Figure 8. Periphyton chlorophyll-a on artificial substrate slides in 2022 and 2023 in flood zone areas (WTS, A20) and reference lakes (B03, Inuggugayualik)	
Figure 9. Water-column chlorophyll-a (ug/L) measured in Whale Tail Mine area lakes including flood zone (WTS, A20) and reference lakes (INUG, PDL) since 2014.	. 36

Figure 10. Catch per unit effort of Slimy Sculpin and Ninespine Stickleback collected from 2021 - 2022 in the study lakes (green = flooded, orange = downstream, blue = reference). NF =	
not fished	. 40
Figure 11. Length-frequency distributions for Slimy Sculpin collected in flooded lakes (WTS, A20,	
A63, A65) and reference lakes (A44, B03, Lake 8)	. 42
Figure 12. Length-frequency distributions for Ninespine Stickleback collected in flooded lakes	
(WTS, A20, A63, A65) and reference lakes (A44, B03, Lake 8)	. 43
Figure 13. Length-frequency distributions for lake trout caught in gillnets set in Whale Tail flood	
zone and reference lakes in 2023.	. 48
Figure 14. Whale Tail Productivity study area (Mammoth Lake is now referred to as Kangislulik	
Lake)	. 51
Figure 15. Baker Lake wastewater study lakes and reference lakes	

LIST OF APPENDICES

APPENDIX A: 2022 & 2023 Supplemental Water Quality Station Results (A63, A44, B03, Lake 8)

APPENDIX B: 2022 & 2023 Periphyton Visual Survey Results

APPENDIX C: 2021 – 2023 Electrofishing Data and 2023 Gillnetting Data

SECTION 1 • INTRODUCTION

1.1 BACKGROUND

In accordance with Fisheries Act Authorizations (FAAs) 16-HCAA-00370 and 20-HCAA-00275, Agnico Eagle maintains a Fish Habitat Offsets Monitoring Plan (FHOMP; Version 2, July, 2021 – Agnico Eagle, 2021²) for the Whale Tail Mine. This Plan was developed to determine whether fish habitat offsetting described in the Whale Tail Pit - Fish Habitat Offsetting Plan (C. Portt and Associates, 2018a) and the Whale Tail Pit Expansion Project Fish Habitat Offsetting Plan (ERM, 2020) is ultimately constructed and functioning as intended.

This monitoring program is organized to meet the requirements of the FAAs listed above, specifically:

Fisheries Act Authorization 16-HCAA-00370 (July, 2018):

- Condition 4.3 Offsetting criteria to assess the implementation and effectiveness of the offsetting measures: All fish habitat offsetting measures shall be completed and functioning according to the following criteria:
 - 4.3.1 Offsetting measures shall be carried out in accordance with the measures set out in the Proponent's Whale Tail Pit Fish Habitat Offsetting Plan (including the updated Appendix C, dated May 2018), or the most recent version approved by DFO;
 - 4.3.2 All offsetting features are to be constructed prior to re-flooding of the north basin of Whale Tail Lake in accordance to the schedule outlined in the Whale Tail Pit Fish Habitat Offsetting Plan dated March, 2018 (or most recent approved version);
 - 4.3.3 The offsetting features (e.g. shoals) have established aquatic biota and are being utilized by fish for one or more of their life history functions.
- Condition 5.1 the proponent shall conduct monitoring of the implementation of offsetting measures according to the approved timeline and criteria;
 - o 5.1.1 List of timeline(s) and monitoring and reporting criteria:,
 - 5.1.1.4 the Proponent shall provide an annual Whale Tail Pit Fish Habitat Offset Monitoring Report to DFO (and interested parties)

² Version 2 of the FHOMP was developed to include requirements of both Whale Tail site FAAs (16-HCAA-00370 and 20-HCAA-00275) and was submitted to DFO in July, 2021. No comment from DFO has yet been received but Agnico has undertaken monitoring and reporting according to this version staring in 2021 since under Version 1 of the FHOMP (Agnico Eagle, 2018a), no field monitoring was scheduled until 2026.

following the construction of the offsetting habitat by March 31. The proponent is required to provide the report until DFO indicates this requirement has been met.

- 5.1.1.5 As part of the annual report, the Proponent shall include, but not limited to:
 - A digital photographic record with GPS coordinates of preconstruction, during construction, and post-construction conditions shall be compiled using the same vantage points and direction to show that the approved works have been completed in accordance with the offsetting plan;
 - A summary of field observations for each respective year as well as the as-built survey;
 - A detailed analysis report summarizing the effectiveness of the offsetting measures.

Fisheries Act Authorization 20-HCAA-00275 (July, 2020):

- Condition 4.3 Offsetting criteria to assess the implementation and effectiveness of the offsetting measures: All fish habitat offsetting measures shall be completed and functioning according to the criteria below;
 - 4.3.1 Offsetting measures shall be carried out in accordance with the measures set out in the Proponent's offsetting plan dated June 5, 2020 in the Whale Tail Pit Expansion Project - Information Requirements in Support of the Application for Authorization Under Paragraph 35(2)(b) of the Fisheries Act prepared by ERM Consultants Canada Ltd and Appendix H – Offsetting Design;
 - 4.3.2 Where Proponent did not provide the detailed engineering plans, offsetting measures shall also be carried out in accordance with the measures as agreed upon after consultation with DFO and other interested parties as per section 4.8.1;
 - 4.3.3 The Proponent shall provide DFO with sufficient information for DFO to determine if flooding of south portion of Whale Tail Lake area as a result of the Whale Tail Dike (PATH No.: 16-HCAA-00370) provides suitable habitat and enhances productivity of target species as identified through consultation with local communities prior to commencement of consultation on final design of offsetting sill. A report shall be presented to DFO as outlined in section 5.3.1 of this Authorization.

- Condition 5.1 Schedule and criteria: The Proponent shall conduct monitoring of the implementation of offsetting measures according to the timeline and criteria below [or according to the timeline and criteria in the offsetting plan approved by DFO, referred to in section 4.2 and attached to this authorization and which are the following:
 - 5.1.1 List of timeline(s) and monitoring and reporting criteria:
 - 5.1.1.1 The Proponent shall monitor the geotechnical aspect of the proposed offsetting sill to establish its efficacy to maintain water levels as predicted and examine erosion or slumping twice a year over a 10year period following the construction of the offsetting sill in 2026.
 - 5.1.1.2 The Proponent shall monitor both biological (fish use, health and biological traits) and ecological (water quality, periphyton productivity) properties of the offsetting habitat expanding on required monitoring in the Fisheries Act Authorization for the Approved Project (PATH No.: 16-HCAA-00370). The proponent shall conduct the biological monitoring programs every year from the date of issuance of the Authorization to the construction of the offsetting sill to show compliance with criteria 4.3.3 and in years 1, 3, 5 and 10 following the construction of the offsetting habitat to establish efficacy of the offsetting measures to provide suitable habitat and enhance productivity of target species.
- Condition 5.2 List of reports to be provided to DFO: The Proponent shall report to DFO on whether the offsetting measures were conducted according to the conditions of this authorization by providing the following:
 - 5.2.1 The Proponent shall provide a Whale Tail Expansion Fish Habitat Offset Monitoring Report to DFO including geotechnical and biological and ecological monitoring as per section 5.1.1. The Proponent is required to provide the Report by March 31 of 2027 and update annually for 10 years or until DFO indicates requirements of this Authorization have been met.
 - 5.2.2 As part of the annual report the Proponent shall include, but is not limited to:
 - 5.2.2.1 a digital photographic record with GPS coordinates of preconstruction, during construction and post construction conditions shall be compiled using the same vantage points and direction to show that the approved works have been completed in accordance with the offsetting plan, and as-built plans and engineering diagrams;
 - 5.2.2.2 a summary of field observations for each respective year; and,

- 5.2.2.3 a detailed analysis report summarizing the effectiveness of the offsetting measures including the final engineering designs, and maps from flooding models.
- 5.2.3 The Proponent shall provide a summary report of all Whale Tail Expansion Fish Habitat Offset Monitoring Reports described in section 5.2.1 before March 31, 2036 to DFO (and interested parties) which shall analyse results from the offsetting measures of the Whale Tail Expansion Project following the construction of the offsetting habitat. DFO reserves the right to request additional Summary Report if annual reporting were to continue until requirement has been met.
- Condition 5.3 Other monitoring and reporting conditions for offsetting:
 - 5.3.1 The Proponent shall provide a detailed *Impact Analysis of Fish Habitat* from Flooding by March 31, 2024. The content of this report shall be discussed and approved by DFO (and interested parties) and will be used to establish if the proposed offsetting measures are likely to provide suitable habitat and enhance productivity of target species.

Further, in accordance with monitoring recommendations in DFO guidance documents (e.g. Smokoroski et al., 2015), two types of monitoring are specified:

- 1. "Compliance" monitoring assesses the physical structure and stability of offsetting features to verify that they were constructed as designed.
- 2. "Effectiveness" monitoring of biological and ecological endpoints (water quality, periphyton growth, fish use) to assess whether offsetting features are functioning effectively as fish habitat.

1.2 OBJECTIVES

The majority of habitat gains for Whale Tail Site offsetting are planned to be achieved through habitat creation and enhancement efforts. To ensure that offsets are functioning as effective fish habitat, assessment of the structure, stability, and successful utilization of these features by fish are the primary goals of the monitoring program for habitat enhancement/creation offsets.

The overall objectives of FHOMP reporting are:

- a. To describe the compliance and effectiveness monitoring methods for assessments conducted in the preceding year according to the FHOMP and describe any deviations from the FHOMP.
- b. To present the results of data analyses conducted according to the FHOMP.
- c. Using those results, to determine whether criteria for success have been met.

In addition to the constructed habitat offsetting features to be monitored through this plan, a portion of offsetting for Whale Tail Mine (FAA 16-HCAA-00370) will be provided through a suite of complementary measures (research projects). Full progress reporting is completed for these programs under separate cover and provided to DFO by May 30 annually, according to conditions of the FAA. Study plans and success criteria for the complementary measures are described in the *Whale Tail Pit - Fish Habitat Offsetting Plan –* Appendix C (May 2018) and referred to minimally here. However, this report does include a summary of research study progress, along with annual activities of the oversight body (Meadowbank Fisheries Research Advisory Group; MFRAG) and indicates when criteria for success have been achieved.

1.3 SUMMARY OF OFFSETTING FEATURES

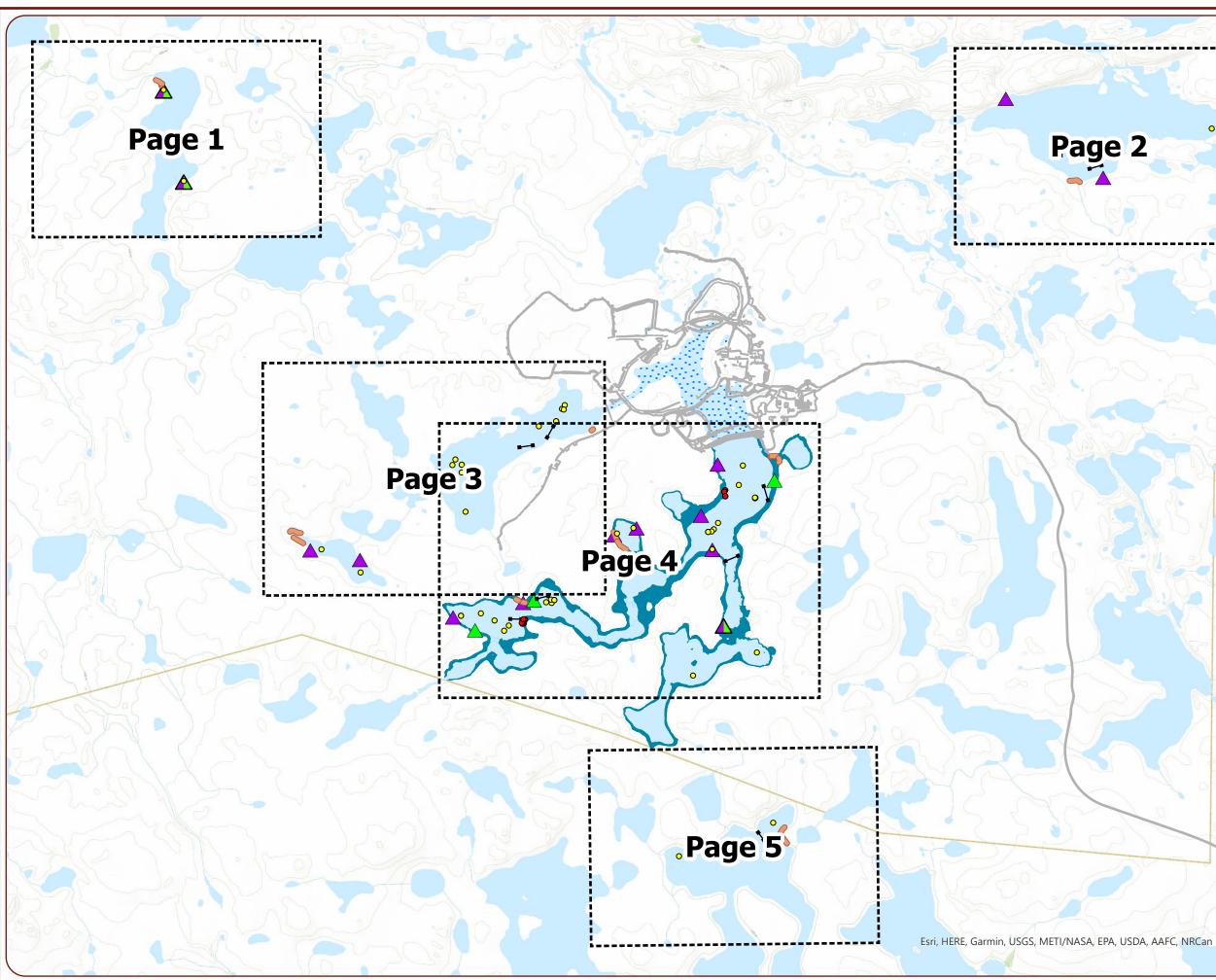
The following constructed features will create or enhance fish habitat to offset losses occurring from the Whale Tail Mine. Complementary measures (research projects) are also summarized. Further details are provided in the *Whale Tail Pit - Fish Habitat Offsetting Plan* (March, 2018 and its Appendix C, May 2018) and the *Whale Tail Pit Expansion Project Fish Habitat Offsetting Plan* (March, 2020).

1.3.1 Constructed Offsets

1.3.1.1 Rock Shoals and Road Scarification

Placement of rock material to change lake basin substrate from fine or mixed to coarse (i.e., the creation of rock shoals) is a commonly used fish habitat enhancement technique. In the dewatered area of Whale Tail Lake (Figure 1), roads and jetties will be scarified or converted to coarse substrate as necessary to create shoal-like features. In addition, an 8.7 ha network of shoals (termed grid shoals based on their conceptual design pattern) will convert a portion of the North Basin to higher-value habitat. Works will be conducted prior to the start of reflooding (est. 2026) and be accessible to fish post-reflooding (est. 2042).

1.3.1.2 Water Retention Sills and Flooding

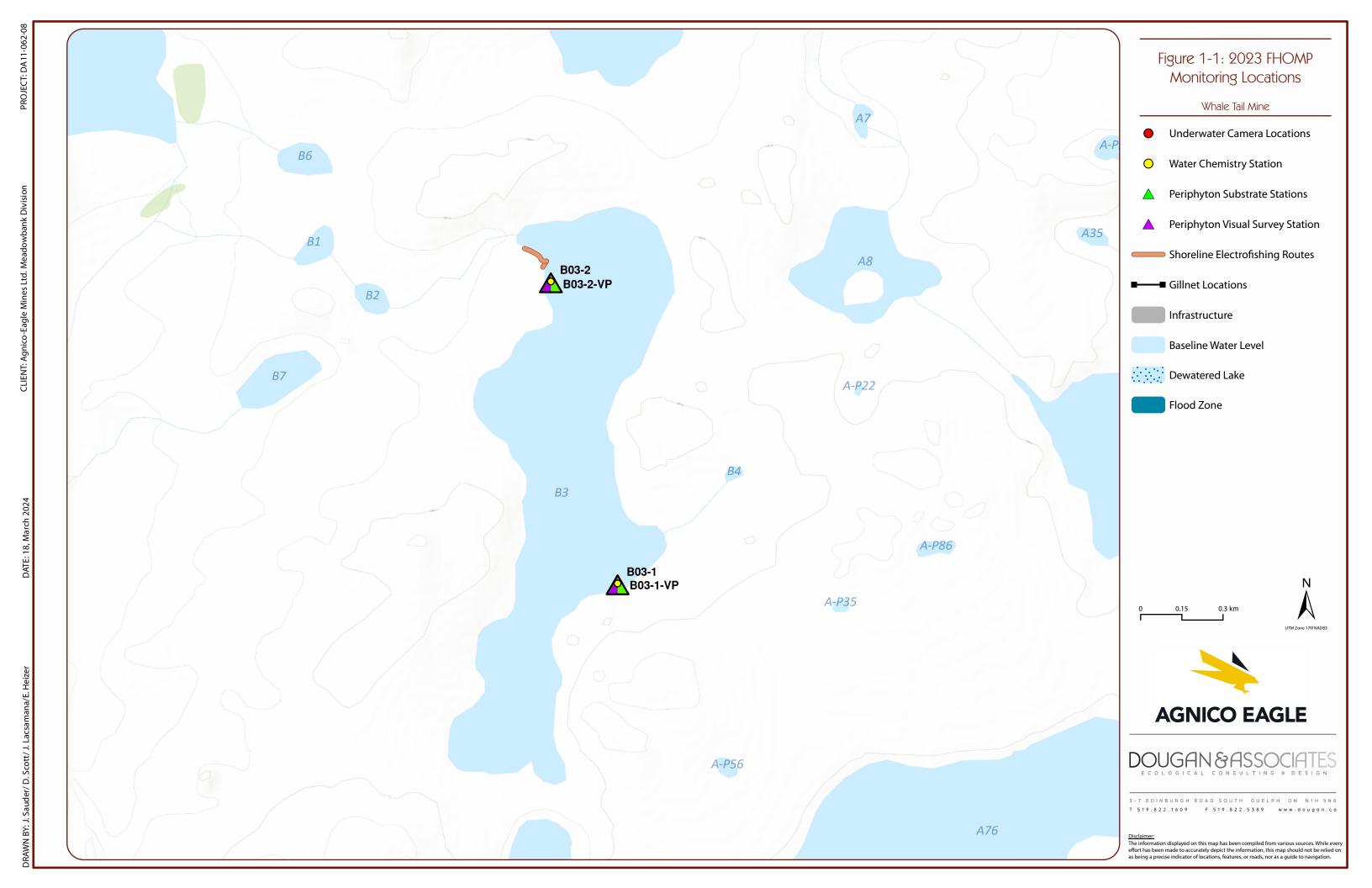

During the operations period for the Whale Tail site, flooding of terrestrial zones in Whale Tail Lake (South Basin) and areas to the southwest is required for water management purposes (Figure 1). Flooding was initiated in 2019 and was complete in 2020. The majority of fish habitat offsets for the Whale Tail Mine will be obtained by constructing two permanent water control structures (sills) to maintain elevated water levels in this area long-term.

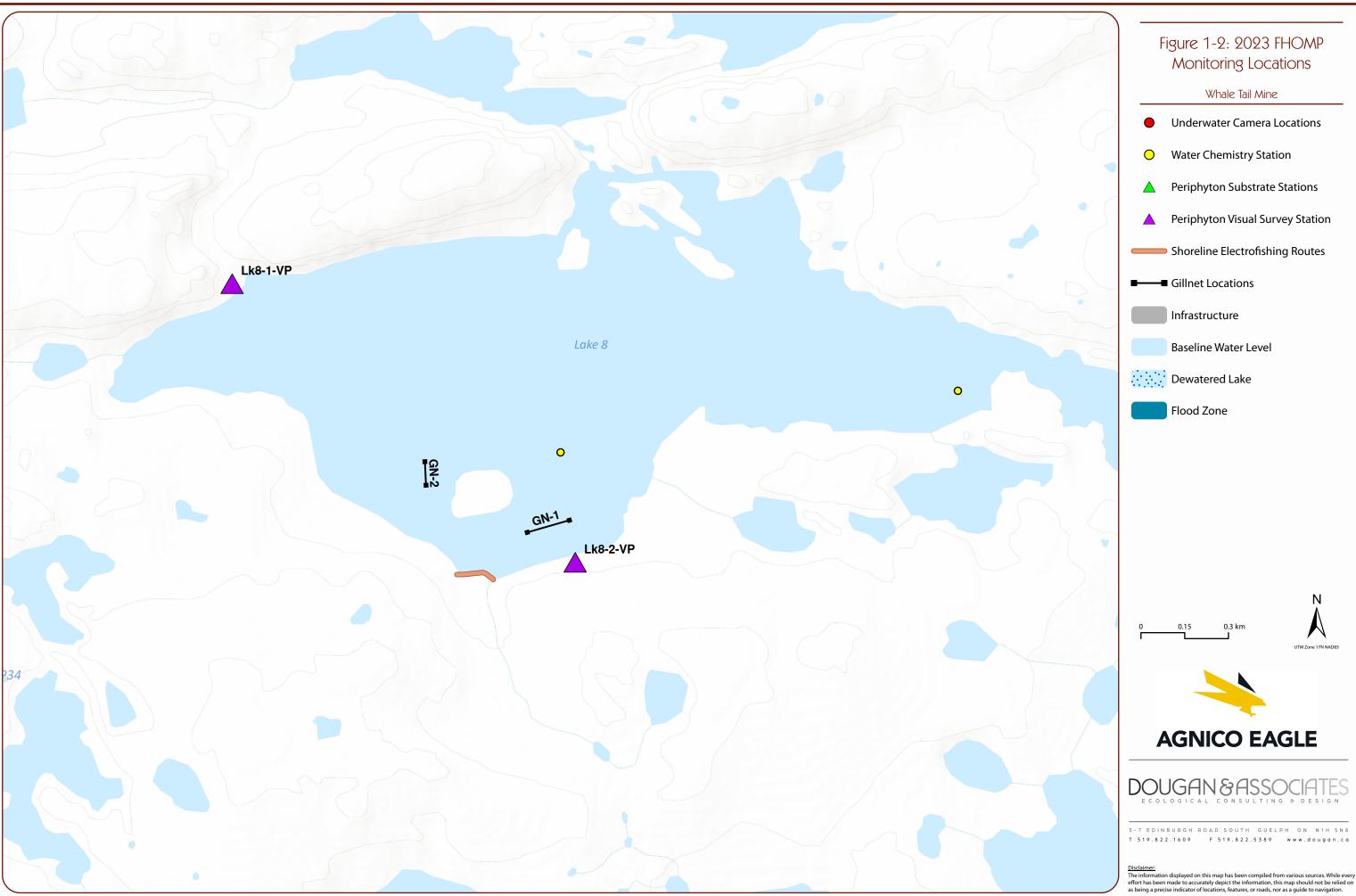
Prior to the pit reflooding period (est. start 2026) while Whale Tail Lake North Basin is still dry, one sill will be constructed just upstream (east) of Mammoth Dike. Once the Whale Tail Dike and Mammoth Dike are breached and flows resume their natural direction from Whale Tail Lake to Kangislulik (Mammoth) Lake, this feature will ensure that water levels in the re-flooded Whale Tail Lake remain at 1 m higher than baseline conditions, creating approximately 46.6

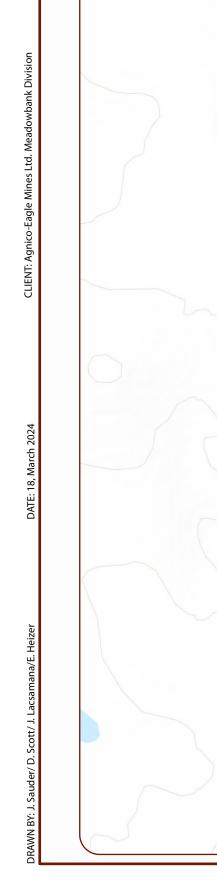
ha of new aquatic habitat. This sill is further described in the *Whale Tail Pit - Fish Habitat Offsetting Plan* (C. Portt and Associates, 2018a).

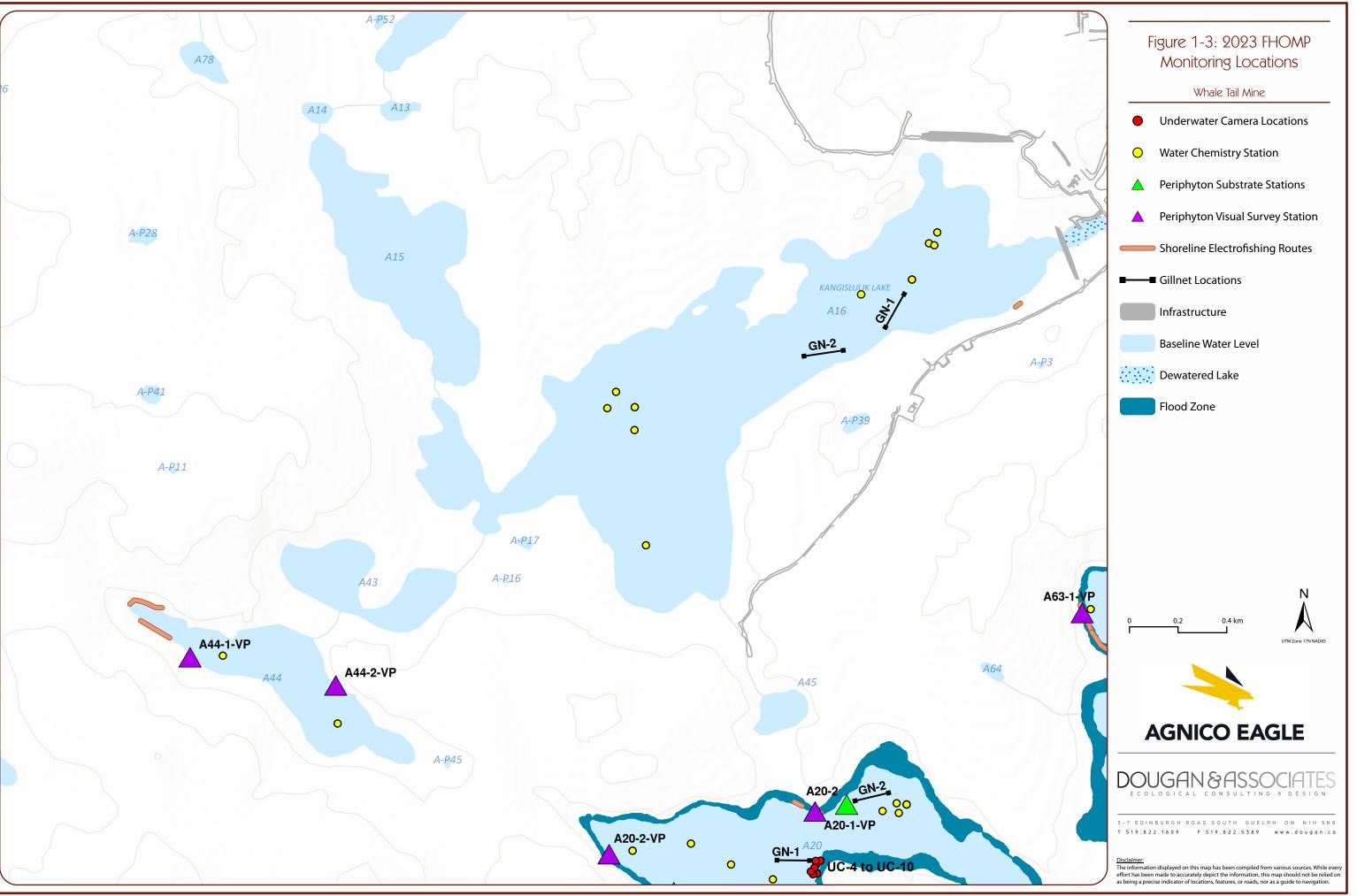
Similarly, a sill is planned to be constructed between lake A18 and Whale Tail Lake. This structure will maintain water levels in the southwest flood zone (A18 – A22 & A63, termed "Lake A18" in the offsetting plan) at 1.3 m above baseline, creating approximately 31.35 ha of permanent aquatic habitat. This sill is further described in the *Whale Tail Pit Expansion Project Fish Habitat Offsetting Plan* (ERM, 2020).

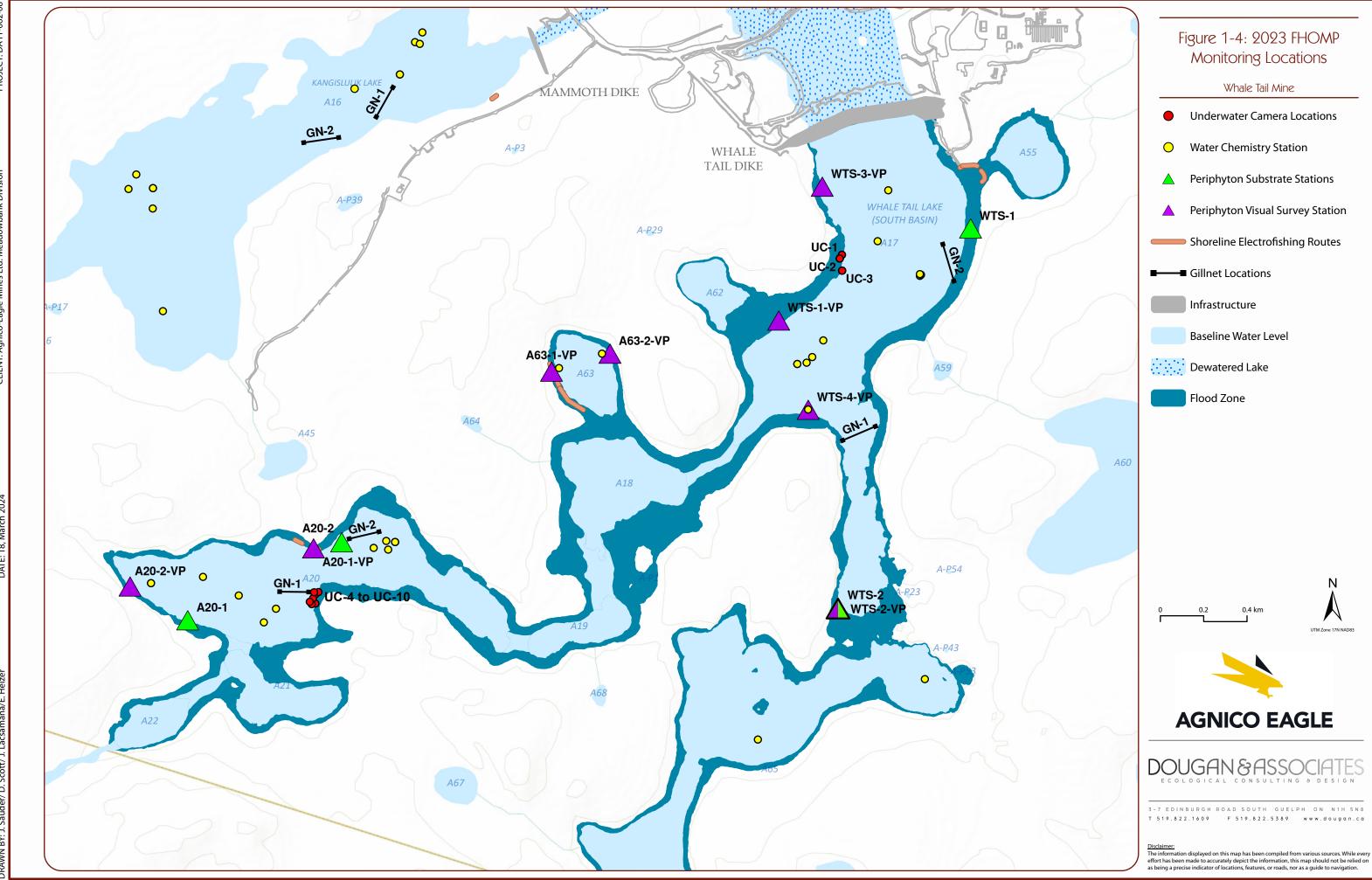
Figure 1: 2023 FHOMP Overview Monitoring Locations

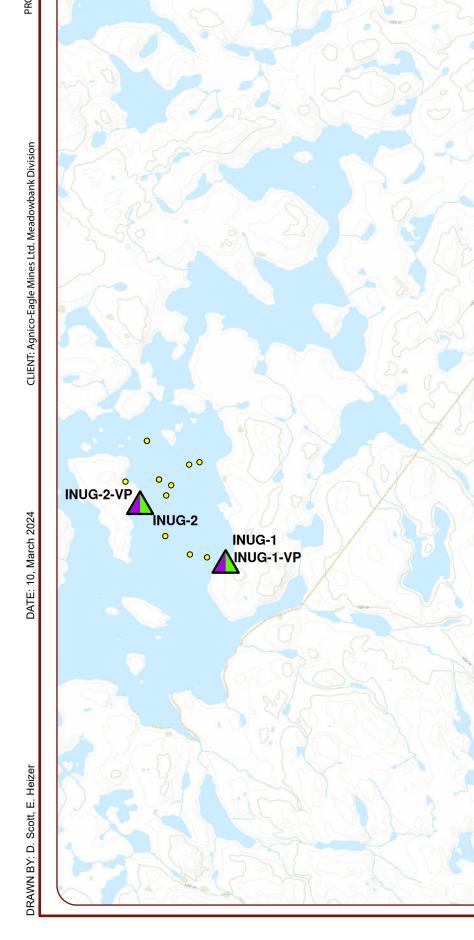


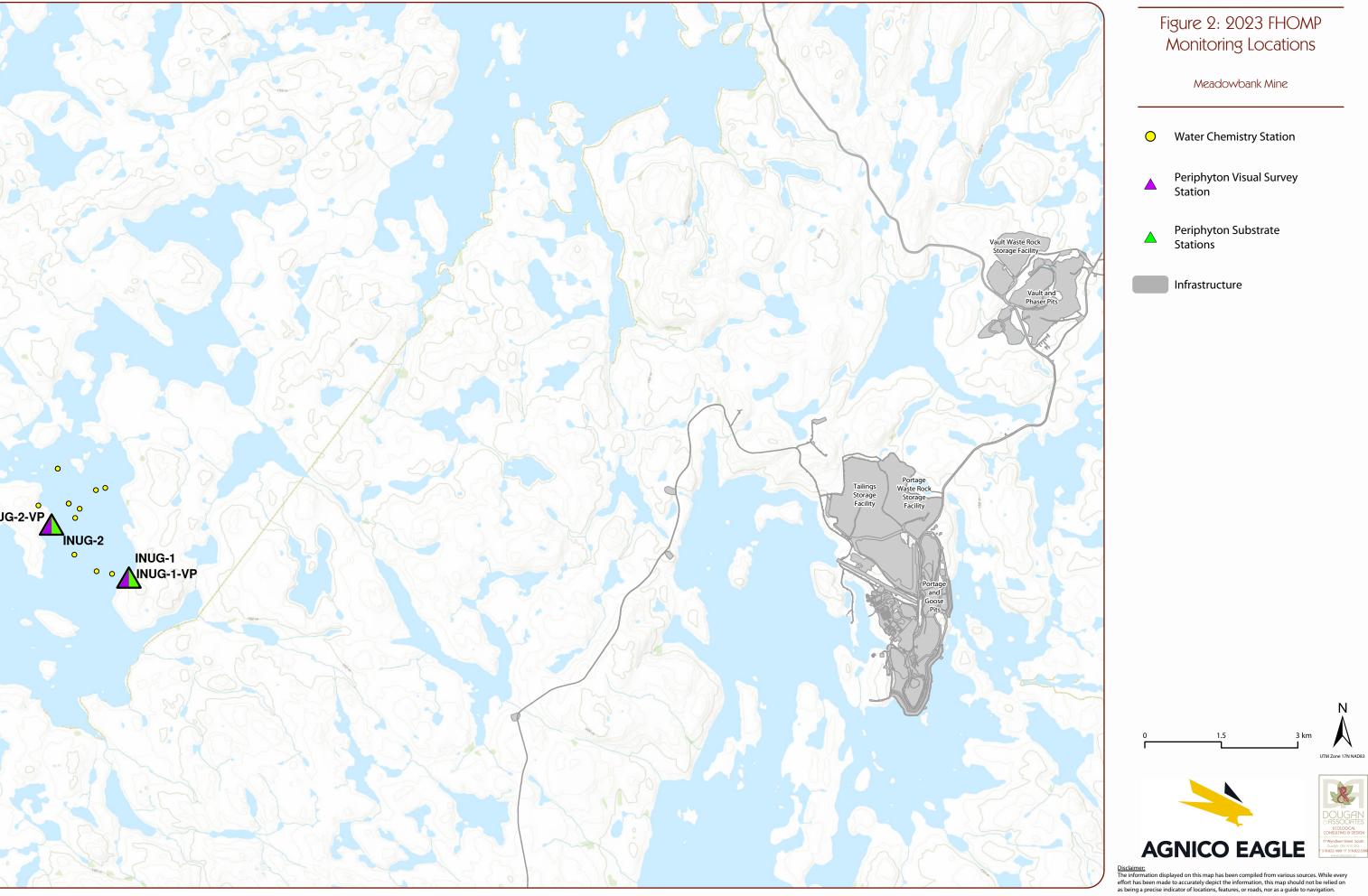

DOUGAN&ASS


3-7 EDINBURGH ROAD SOUTH GUELPH ON N1H 5N8 T 519.822.1609 F 519.822.5389 www.dougan.ca


Disclaimer: The information displayed on this map has been compiled from various sources. While every effort has been made to accurately depict the information, this map should not be relied on as being a precise indicator of locations, features, or roads, nor as a guide to navigation.







1.3.2 Complementary Measures

A suite of complementary measures (research projects) is included as offsetting for the Whale Tail Mine. These studies continue to inform Agnico Eagle's offset planning in Nunavut as well as fish and fish habitat monitoring techniques. The complete scope of these complementary measures including methods, timelines, deliverables, and budgets is provided in Appendix C (May, 2018) of the *Whale Tail Pit - Fish Habitat Offsetting Plan* (C. Portt and Associates, 2018a). Studies include:

- 1. Assessment of changes in aquatic productivity and fish populations due to flooding of Whale Tail South and downstream lakes during operations
- 2. Assessment of impacts of the Baker Lake wastewater outflow on aquatic systems including fish and fish habitat
- 3. Literature review and field validation of northern lake fish habitat preferences
- 4. Arctic Grayling occupancy modeling (complete)
- 5. Assessment of pit lake habitat and use by fish
- 6. Development of methods for the collection and analysis of aquatic eDNA for fish community assessment

These programs have been developed in collaboration with research partners at academic institutions, and generally consist of 2-5 year study plans initiated in 2018 or 2019. One study (pit lake habitat use assessment) is planned to begin in or around 2027 at the Meadowbank Mine, following completion of flooding for the Phaser and Vault Pits, unless a suitable alternate research site is identified in the nearer term.

1.4 SCHEDULE FOR MONITORING

The proposed schedule for monitoring of offsets is described in the FHOMP (Agnico Eagle, 2021).

Generally, a pre-offsetting monitoring program occurred from 2021 – 2023, prior to construction of any permanent sills, to determine effectiveness of flooded terrestrial zones as fish habitat. A summary of results for this program (2021 – 2023) is included here, with the final analysis to be provided to DFO under separate cover in 2024 (*Impact Analysis of Fish Habitat from Flooding*), in fulfillment of Condition 5.3.1 of FAA 20-HCAA-00275.

Final monitoring for constructed offsets is planned to begin after 2026, when construction of the permanent sills is complete. Monitoring for the A18 flood zone and Whale Tail South flooding offsets will occur from 2027 – 2036 and monitoring for the Whale Tail North flooding and shoals offsets will occur from 2040 – 2052.

Progress updates for complementary measures will be provided annually.

 Table 2. General schedule of assessments conducted under the pre-offsetting ecological

 monitoring program for the Whale Tail site.

Component	2021	2022	2023
Water levels	\checkmark	\checkmark	\checkmark
Water quality	\checkmark	\checkmark	\checkmark
Periphyton (visual and/or artificial substrate study)	√*	~	\checkmark
Small-bodied fish – shoreline habitat	\checkmark	\checkmark	✓ **
Large-bodied fish - foraging and spawning habitat	-	-	\checkmark
Report	Data report (2022)	Data report (2023)	Data report (March 31, 2024) and final analysis report (2024)

*Pilot study

**Not required under FHOMP, but collected opportunistically.

SECTION 2 • MONITORING METHODS

2.1 CONSTRUCTED OFFSETS

Constructed habitat offsets for the Whale Tail Mine consist of rock shoals and two water retention sills to maintain specified flood levels. The monitoring plan for these habitat features consists of both physical and ecological components. Monitoring of physical components is intended to confirm and report compliance with requirements of the associated *Fisheries Act* Authorizations to construct specific habitat offsets. Ecological monitoring will be conducted to assess the effectiveness of these features in supporting fish. A complete description of scheduled monitoring to assess physical structure and ecological function of the offsetting features is provided in the FHOMP, and methods for assessments completed in 2023 are described below.

2.1.1 Physical Structure Monitoring

Once permanent offsetting features are constructed (est. 2026+), physical monitoring will include an assessment of flood zone area (hectares flooded, using measured water levels), shoal area, and stability of the features. No physical structure monitoring is specified in the FHOMP prior to that time. However, a review of water levels in the flooded Whale Tail South area is provided here for reference and to support the final analysis of flood zone habitat

suitability. Throughout the operations phase, water levels within the Whale Tail South flood zone are measured every 3 h by piezometers installed in the Whale Tail Dike.

2.1.2 Ecological Monitoring

As indicated in Table 2, ecological monitoring was conducted from 2021 - 2023 in support of the pre-offsetting ecological monitoring program. This included water quality monitoring under the CREMP, periphyton growth assessments, small-bodied fish population assessments within the newly created shoreline habitat, and large-bodied fish assessments in deeper water areas (2023 only). Details of these assessments including dates, locations, field methods and laboratory analyses are described below. Locations for 2023 are presented in Figures 1 and 2.

2.1.2.1 Flood Zone Water Quality

Water quality analyses conducted primarily under the CREMP are used to confirm suitable water quality within the Whale Tail flood zones that form part of offsetting plans. Under this program, mid-water column samples in areas > 5 m deep are collected at two sites from each of two formerly separate lakes in the flood zone (Whale Tail South and A20), as well as reference lake Inuggugayualik Lake, up to 5x/year. Complete methods are described in the 2023 CREMP Report (Azimuth, 2024), an Appendix of the Meadowbank Complex 2023 Annual Report.

For the purposes of FHOMP monitoring, supplemental water quality sampling following CREMP methods was also conducted once annually in lakes where fish surveys took place, if sampling was not already conducted as part of the CREMP. Under the FHOMP (2022 and 2023), these lakes included A63 (part of the flood zone) and reference lakes B03, A44, and/or Lake 8 (as feasible).

In addition, water quality analyses were conducted from 2018 – 2021 as part of the complementary measures research study lead by Dr. Heidi Swanson (Section 3.2.2) in all lakes where electrofishing occurred. These results are analyzed separately by the research team to inform their program. A summary of those results was provided in the 2023 MFRAG meeting (see Section 3.2.1) and full results will be presented in the final research report (expected end of 2024).

2.1.2.2 Periphyton Growth

The periphyton community consists of a collection of microorganisms, including algae, that grow attached to or in very close proximity to submerged substrate. Colonization of the community occurs over time, with rates depending on factors such as nutrient and light availability. Periphyton is an important food source for benthic invertebrates and has been broadly used as an indicator metric in biomonitoring protocols for many years.

For the Whale Tail Mine, colonization of periphyton is monitored to provide a commentary on growth in flood zone habitat compared to reference areas. Historical data analysis as part of the 2015 CREMP design update (Azimuth, 2016) has indicated that due to extreme natural variability, statistical comparisons of periphyton on in-situ substrate (e.g., submerged rock faces) are not well suited for receiving environment monitoring in this area. As a result, periphyton monitoring for the Whale Tail Mine has included two alternate methods:

- 1) Visual surveys in designated locations within newly created flood zones to qualitatively assess progression of periphyton development on natural rock substrate.
- 2) Deployment of artificial substrate samplers to confirm whether colonization rates are comparable to reference systems, indicating that a periphyton community can become established.

Since periphyton sampling using artificial substrate had not previously been used at the Meadowbank Complex, a pilot study was conducted in 2021 with a limited set of lakes to assess feasibility and field test methods. This study was expanded to its full scope beginning in 2022, and visual surveys were also conducted in accordance with the FHOMP.

2.1.2.2.1 Artificial Substrate Sampling

In 2021, a pilot study was conducted to test the feasibility of measuring a periphyton growth metric (chlorophyll-a) on artificial substrate within the study lakes over the ice-free season. Although there was a high rate of sample substrate loss, this pilot study was successful in demonstrating that seasonal periphyton biomass as represented by chlorophyll-a concentration can be effectively measured using artificial substrate samplers in the Whale Tail flood zone. With some adjustments to sampler design intended to improve sample retention, periphyton substrates were again deployed in 2022 and 2023 across the target lake basins, according to the FHOMP. Details of the samplers, dates, locations, and analysis are described below.

Artificial Substrate Samplers – Each periphyton sampler consisted of two or four Plexiglas slides (30.5 cm x 20.3 cm each) suspended side-by-side approximately 25 cm below a wood float, with supplemental rubber buoy. A weight (U-bolt, washer, or hockey puck) was attached to each slide to help keep them suspended vertically in the water column (Figure 3).

Figure 3. Artificial substrate sampler for periphyton study in 2022.

Sample Locations & Dates – For both study years (2022 and 2023), four Plexiglas slides were deployed at each monitoring station (Figures 1 & 2). Locations were the same in both years. Each sampler was deployed in a shoreline location in 1 - 2 m water depth and secured using anchors affixed to the ends of the wood float (Figure 4).

In general, samplers were deployed from the end of June to the beginning of September (exact dates in Section 3.1.2.2.1). All samplers except those at the far field reference site (INUG) were checked mid-season, and fixed as needed (e.g., re-attached rubber buoys, retied loose or untied anchor ropes, moved to deeper water as needed). In 2022, water levels dropped rapidly towards the end of the season, and several samplers were found onshore or were not located at collection time. Any impacts of sampler loss on final results are presented in Section 3.1.2.2.1. In 2023, sampler design and deployment methods were optimized after two years' experience, and all samplers remained intact in the water column throughout the season.

Figure 4. Artificial substrate periphyton sampler in-situ (2023).

Sample Collection and Analysis – Periphyton samplers were retrieved from the water and placed in labelled sample bags after tether ropes were removed. Care was used not to disturb periphyton on the slides during this process. Slides were stored in a dark cooler with ice packs prior to processing (periphyton removal) onsite. Upon return to the onsite laboratory, Plexiglas slides were removed from sample bags and scraped clean into the sample bags using a plastic scraper and a small amount of deionized water. Sample bags were sealed and stored frozen prior to and during shipping to the accredited laboratory for analysis. Analysis for chlorophyll-a as a relative measure of biomass was performed by ALS Laboratories using procedures modified from EPA Method 445.0. Briefly, chlorophyll-a content by mass is determined using a 90% acetone extraction followed with analysis by fluorometry.

2.1.2.2.2 Visual Surveys

At the end of the summer season (September 2 - 15, 2022 and August 25 - September 9, 2023), visual observations of periphyton growth were recorded at two to four stations in the study lakes (Figure 1 and 2). A rectangular plot of 1 x 2 m was observed and photographed, and specified periphyton characteristics were recorded. Methods followed those used by Portt & Associates for baseline surveys conducted for the Whale Tail Mine FEIS (Agnico Eagle, 2016), and described in Golder (2015). Specifically, for each sampling location:

- A shoreline area of approximately 1 x 2 m was identified, extending from the water's edge. Locations were marked to facilitate re-analysis in the next year.
- To retain a visual record, photographs were taken of each plot at the micro scale (substrate/periphyton as seen looking down on the plot) and macro scale (~20 m of shoreline).
- The following information was recorded:
 - Substrate proportions at the microhabitat level
 - Description of colour, approx. thickness, and texture of periphyton at the microhabitat level
 - Percent cover of periphyton at the micro habitat scale (none 0%, sparse <5%, low 5-25%, moderate 25-75%, high >75%) and evenness at the macrohabitat scale (even/patchy)

For this report, a qualitative inter-annual comparison of results is provided including available baseline survey results.

2.1.2.3 Fish Use

2.1.2.3.1 Shoreline Habitat (Habitat Types 2 & 3)

To determine effectiveness of flood zones as fish habitat, relative abundance and population dynamics indicators for resident small-bodied fish in flooded shoreline areas are evaluated and compared to reference sites.

According to the Whale Tail Habitat Evaluation Procedure (HEP; Portt & Associates, 2018; ERM, 2020), the newly created shoreline in Whale Tail Lake will provide primarily foraging habitat for Ninespine Stickleback (*Pungitius pungitius*) and Slimy Sculpin (*Cottus cognatus*), as Habitat Types 2 and 3. This assumption has been evaluated using shoreline electrofishing

surveys in flood zone areas (Whale Tail South (WTS), A63, and A20)³, downstream areas (Kangislulik (Mammoth) Lake^a), and reference areas (Lake 8, A44, B03) (Figure 1, Table 3).

Electrofishing is an active fishing technique that uses pulsed direct current to initiate an involuntary swimming action in fish. When exposed to the electrical field, fish become oriented toward the electrofisher and involuntarily swim towards the anode and are collected with a dip net. In all study years, backpack electrofishing was conducted by a team of two (including at least one person experienced and trained in backpack electrofishing). One person with a backpack electrofisher, and another with a dip net, collected fish by wading along representative shorelines in Habitat Types 2 and 3 of flooded lakes and reference lakes.

Electrofishing surveys have been carried out from 2018 – 2023 in this area. Surveys from 2018 – 2021 were conducted by research teams from the laboratory of Dr. Heidi Swanson (Wilfred Laurier University, formerly, University of Waterloo), and surveys in 2022 and 2023 were conducted by qualified Agnico Eagle employees and/or consultants.

Electrofishing locations for 2023 are shown in Figure 1. When time and access allowed, electrofishing was conducted until a minimum of 30 Slimy Sculpin were collected per lake. This number was selected by the research team (see Section 2.2) in 2019 using an *a priori* power analysis to determine minimum sample size.

For all surveys, fish species, length, and weight were recorded for the small-bodied fish captured, along with duration of shocking (seconds) for calculation of catch-per-unit effort (CPUE). Incidental catch of large-bodied fish was noted, with immediate live release. For surveys from 2018 – 2021, a subset of fish captured (approximately 30 per species) were euthanized for further analysis of tissue chemistry and age.

³ Lake A65 was also electrofished from 2018 – 2021 for research purposes, but it is not included in the FHOMP study extension (2022 – 2023) because it is not planned to remain flooded post-closure and does not contribute to fish habitat offsets. Kangislulik (Mammoth) Lake was electrofished in all years (2018 – 2023) for research purposes and/or other compliance programs (EEM), and results are included here for reference but this lake is not part of flood zone, so is not specifically included in the FHOMP analysis.

2023 Fish Habitat Offsets Monitoring Report Agnico Eagle Mines Ltd. - Meadowbank Complex

Table 3. Summary of shoreline electrofishing effort (total shocking time across species) under the FHOMP pre-offsetting ecological monitoring program for the Whale Tail Mine.

		2021		2022		2023	
Habitat Type	Waterbody	Dates	Duration (min)	Dates	Duration (min)	Dates	Duration (min)
	Whale Tail South	Aug 14, 15, 16	143	Aug 21	36	Aug 20, 25, 26	61
	A63	Aug 16	54	Aug 23	51	Aug 23	85
Flooded	A65	Aug 12	74	NF	NF	NF	NF
	A20	Aug 10	100	Aug 21	53	Aug 23	33
Downstream	Kangislulik (Mammoth)*	Aug 17	41	Aug 18	66	Aug 20	37
	Lake 8	Aug 15	84	Aug 20	105	Aug 21	72
Reference	A44	Aug 13	72	Aug 19	57	Aug 27	46
	B03	Aug 14, 18	57	Aug 22	59	Aug 30	37
NF = not fished. *Fished for research or other purposes, not part of the FHOMP.							

2.1.2.3.2 Pelagic Habitat (Habitat Types 6 & 9)

To evaluate the ongoing use of deeper water habitat in the Whale Tail Lake area after flooding, both visual survey methods (underwater camera) and gillnet surveys were conducted in 2023.

2.1.2.3.2.1 Underwater Camera

In follow-up to baseline surveys conducted in 2016, underwater video was recorded in areas of WTS and A20 with habitat identified as having high potential for lake trout spawning (cobble/rubble substrate with little sediment infill, 2 - 5 m depth, at the edge of a slope to deeper water). Cameras were set in one general location in each of WTS and A20 (Figure 1). The WTS location was surveyed under baseline conditions and is still expected to meet these spawning habitat characteristics under the current flood levels. The A20 location is new high-potential spawning habitat created by flooding (this area was too shallow prior to flooding, but met substrate and slope characteristics).

Following baseline survey methods (C. Portt and Associates, 2018b), underwater video was recorded and reviewed for visual evidence of fish presence and spawning behaviour (Table 4). Surveys during the 2016 baseline study attempted to record overnight movements (primary spawning time), but the motion camera sensors did not function in the dark and recordings were only successful during daytime hours. While alternate methods to survey night-time movements were explored at that time and for 2023, none were ultimately identified as feasible. For example, night-time boat-based surveys with flood lights were not permitted in either year, based on safety considerations.

Survey dates and durations are provided along with results (observations) in Section 3.1.2.3.2.1.

Baseline Methods (2016)	Follow-Up Methods (2023)
 Action or sport video cameras (Wasp Waspcam Tack Camera) were deployed underwater with a view of an identified potential spawning shoal. Each camera was attached to a heavy metal base, and had an external battery pack. The camera was set to commence recording when motion was detected and to record for one minute after motion ceased. All deployments were overnight (approx. 16 h per location), during the period of August 27 – 31 (ultimately cameras only functioned in the day-time). 	 HD compact video camera (Sony Steadyshot) were deployed underwater with a view of an identified potential spawning shoal (Figure 1). For most time periods, between two and three cameras were set in one location with different views. Each camera was attached to a heavy metal base. The camera was set to commence recording as soon as they were positioned underwater. All deployments were during the daytime, during the period of August 30 – September 19, and approximately 2 h

Table 4. Underwater camera methods.

Baseline Methods (2016)	Follow-Up Methods (2023)
 The deployment and retrieval dates and times were recorded. The water depth and GPS coordinates at each location were determined. The recorded video was subsequently reviewed to identify fish presence and indications of spawning behaviour (e.g. releasing gametes, shuddering/gaping, following). The start and stop dates and times of each video segment and the number and the species of fish observed were determined, when possible. It was not possible to distinguish among individual fish, so a 'fish observation' was recorded each time a fish entered the video frame, regardless of whether it appeared likely it was the same individual(s) seen previously. 	 of video were obtained per location, per date set. The deployment and retrieval dates and times were recorded. GPS coordinates at each location were determined. The recorded video was subsequently reviewed to identify fish presence and indications of spawning behaviour (e.g. releasing gametes, shuddering/gaping, following). The time stamp of each video segment and the number and the species of fish observed were determined, when possible. It was not possible to distinguish among individual fish, so a "fish observation" was recorded each time a fish entered the video frame, regardless of whether it appeared likely it was the same individual(s) seen previously.

2.1.2.3.2.2 Gillnetting

The intent of large-bodied fish surveys in 2023 was to provide evidence of ongoing use and effectiveness of newly created deep-water rearing/foraging habitat (generally, habitat converted from <2 m to >2 m). Gillnet surveys were scheduled in 2023 to coincide with timing of the Whale Tail EEM program, to minimize impacts on local fish populations. While the EEM program focused on Kangislulik (Mammoth) Lake as the effluent receiving environment, surveys were extended to Whale Tail South and A20 for the evaluation of flood-related effects, as well as the EEM program's two reference lakes (Lake 1 and Lake 8). Gillnet locations are shown in Figure 1.

Following EEM methods, index gill nets comprised of six panels of stretched mesh (sizes 126, 102, 76, 51, 38, and 25 mm) were used. Each panel of gill net was 1.8 m (6 feet) deep by 22.7 m (25 yards) long, so that the length of a six-panel gang was 136.4 m (150 yards). Nets were set in locations targeting lake trout habitat in each lake. Geographic coordinates were recorded, along with water depth, date, and time of set and retrieval (Table 5). Set duration was determined in the field based on local conditions, with the objective of capturing 25 lake trout and minimizing the mortality of additional lake trout and incidental catch. Under the FHOMP, Arctic char were also planned to be targeted, but subsequent review of baseline data for this species indicated that populations in the flood zone and reference lakes are too low to support catch of 25 Arctic char without significant incidental catch mortality, so the decision was made to focus the study on lake trout only. However, the number of individuals of each

species captured in each net were recorded, for calculation of total CPUE. For lake trout (minimum of 25 or those not surviving capture), the following characteristics were recorded:

- Fork length (mm)
- Total weight (g)
- Deformities, lesions, tumours, or parasites (DELTs)
- Liver weight (g)
- Sex, gonad condition, and gonad weight (g)
- Egg weight for spawning females
- Otoliths were collected for aging

For each location, supporting water quality measurements were also collected for the purposes of the EEM analysis (specific conductivity, pH, dissolved oxygen, temperature).

Туре	Waterbody	Net Set ID	Set Time	Lift Time	Water Depth	
	Whale Tail	Net 1	August 23 20:05	August 24 9:03	2.2 – 2.5 m	
Flood Zone	South	Net 2	August 23 20:05	August 24 10:03	2.3 – 6.1 m	
	A20	Net 1	August 24 20:05	August 25 07:45	3.5 – 5.3 m	
	A20	Net 2	August 24 20:15	August 25 9:00	2 – 6.7 m	
Downstream	Kangislulik (Mammoth)*	Net 1	August 18 19:15	August 19 09:00	2.8 – 4.7 m	
		Net 2	August 18 18:46	August 19 09:40	2.6 – 4.1 m	
	Lake 8	Net 1	August 20 13:00	August 21 9:00	3 – 4.5 m	
Reference		Net 2	August 20 13:30	August 21 10:00	3 – 4.5 m	
	Lake 1	Net 1	August 17 14:30	August 18 10:40	1.5 – 2 m	
		Net 2	August 17 14:45	August 18 11:03	2.5 – 2.5 m	
*Kangislulik (Mammoth) Lake receives mine effluent, and was fished for EEM purposes. Results are presented here for reference, but are not specifically included in the FHOMP analysis.						

Table 5. 2023 gillnet study locations, net set times, and water depths.

2.2 COMPLEMENTARY MEASURES

As required by Fisheries Act Authorization 16-HCAA-00370, complete annual progress reports on complementary measures are provided to DFO by May 30 of the following year, including methods and preliminary results.

An interim update is provided in this report for each project, along with a description of activities of the MFRAG in the preceding year. These interim updates will focus on general activities and identifying progress towards study completion, and do not include specific methods and results.

SECTION 3 • RESULTS & DISCUSSION

3.1 CONSTRUCTED OFFSETS

3.1.1 Physical Structure Monitoring (Water Levels)

Throughout the operations phase, water levels in the Whale Tail flood zone have been recorded every three hours using piezometers installed in the Whale Tail Dike. Measured water levels through 2023 are shown in Figure 5. During the first year of scheduled flooding (2019), peak water levels exceeded predictions in July (up to 155.8 meters above sea level; masl), but did not reach the maximum predicted final flood elevation of 156.0 masl). This was likely a result of record precipitation in that year. Since 2020, water levels have remained lower than FEIS model predictions, after an amendment to the final design⁴ of the South Whale Tail Channel outlet was made. The design change included a decrease in the channel inlet elevation by 0.5 m, to 155.3 masl, in order to reduce peak water levels against the Whale Tail Dike. Operational water levels moving forward are therefore predicted remain lower than the original 156.0 masl prediction. To date (2020 - 2023) operations-phase flood-zone water levels have ranged between approximately 154.55 and 155.75 masl over the course of a year.

Despite a reduction in operational water levels compared to FEIS predictions throughout the flood zone, measured elevations are the same as or exceed those that will eventually be maintained permanently for offsetting purposes, following sill construction.

For Whale Tail Lake, offsetting plans assume an increase to 154.02 masl from a baseline of 153.02 masl (baseline determined from July 21, 2011 CanVEC imagery). To date, operational water levels in late July have remained in the range of 155.1 - 155.4 masl, or about 1.1 - 1.4 m higher than they will be post-offsetting. As a result, shoreline habitat in Whale Tail Lake – South Basin that is evaluated now under the pre-offsetting ecological monitoring program may

⁴ The completed construction summary report for the South Whale Tail Channel is available through the NWB public registry here: ftp://ftp.nwb-oen.ca/registry/2%20MINING%20MILLING/2A/2AM%20-%20Mining/2AM-WTP1830%20Agnico/3%20TECH/D%20CONSTRUCTION/D16/South%20Channel/

be considered representative of, but not identical to, post-closure shoreline habitat in this area, once water levels are drawn down by 1.1 - 1.4 m.

For Lake A18, offsetting plans assume an increase to 155.3 masl from a baseline of 154.0 masl at the A18 sill⁵. Since the Whale Tail South Channel which is the current outlet for the flood zone was constructed at 155.3 masl, current operational water levels align with this plan and no significant change in water levels or shoreline habitat would be expected following sill construction.

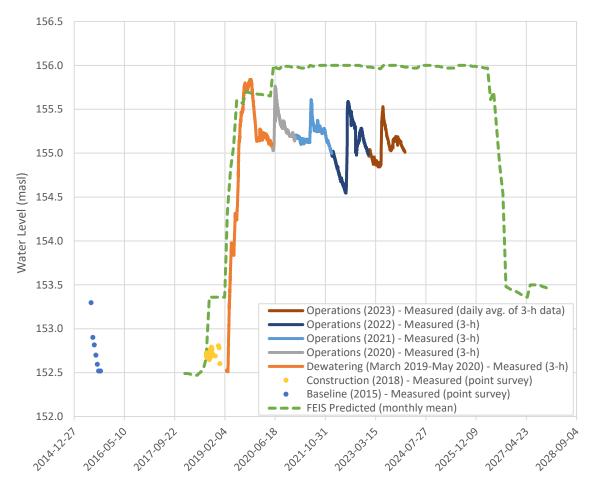


Figure 5. Measured and predicted water levels in the Whale Tail South flood zone (point measurement by GPS survey, 3-h interval by piezometer, or modeled monthly mean, as indicated). Predicted water levels are for Whale Tail Lake from FEIS Addendum for the Whale Tail Pit Expansion Project, Appendix 6-O, Table D-14 (Agnico Eagle, 2018b).

⁵ For lakes further upgradient from A18 that will be permanently joined to it by flooding (A19 – A22 plus A63), baseline water elevations are higher than A18, so flooding to the planned 155.3 masl increases water depths in those lakes by less than 1.3 m. For example, baseline depths in A22 were measured at 155.0 masl in the offsetting plan, so flooding to 155.3 masl adds 0.3 m above baseline.

3.1.2 Ecological Monitoring

3.1.2.1 Flood Zone Water Quality

Complete results of annual CREMP water quality monitoring are presented in the 2023 CREMP Report (an appendix of the 2023 Meadowbank Complex Annual Report). Results of the CREMP analysis are the primary line of evidence for understanding water quality in the Whale Tail flood zone for the purposes of the FHOMP and are summarized below. This summary focuses on results within flood zone lakes (WTS and A20), as compared to baseline/reference (Inuggugayualik Lake) within the CREMP analysis framework.

Results for supplemental water quality sampling in locations where fish surveys have occurred that are not part of the CREMP are provided in Appendix A. This limited set of results is compared to CREMP threshold values (Azimuth, 2022), to generally confirm suitability as aquatic habitat during the monitoring period. All results met these guidelines, with the exception of one of two samples in Lake A63 in 2022, which marginally exceeded thresholds for aluminum and iron. Both of these CREMP thresholds are from 1987 CCME Water Quality Guidelines for the Protection of Aquatic Life, and both are now published or currently under review as Federal Environmental Quality Guidelines. In both cases, the published (aluminum) or draft (iron) federal guidelines would not be exceeded in the A63 sample, so the potential for adverse effects is not considered further here.

3.1.2.1.1 CREMP Summary

Briefly, during the FHOMP study period of 2021 - 2023, some exceedances of CREMP water quality triggers and statistically significant increases relative to baseline/reference conditions have been observed in flood zone lakes for:

- Conductivity, hardness, and related ionic compounds (TDS and constituent ions such as calcium, magnesium, potassium, and sodium),
- Nutrients (total Kjeldahl nitrogen, total phosphorus, total organic carbon and dissolved organic carbon),
- Titanium and lithium (WTS) no effects-based thresholds for aquatic life, and/or likely not mine-related.

Similar to results seen over the years at the Meadowbank study lakes, these trends for conventional parameters and major ions represent increases above baseline/reference conditions only. Except for total phosphorus (discussed below), none of the analytes exceeding CREMP triggers (generally set at the 95th centile of baseline data) have effects-based thresholds (e.g. CCME Water Quality Guidelines for the Protection of Aquatic Life). While mine-related changes in these parameters have occurred, the observed concentrations are not expected to result in adverse effects to aquatic life, as described in a review conducted as an extension of the CREMP Report in 2019.

As predicted within the FEIS (Agnico Eagle, 2018b), mean annual total phosphorus at WTS has increased since flooding and effluent discharge began, and has exceeded the CREMP trigger value each year since 2019. For A20, the trigger has been exceeded each year beginning in 2021. FEIS-predicted and measured concentrations of total phosphorus (and other nutrients) to date are shown in Figure 6. While some measured concentrations of phosphorus have exceeded monthly FEIS predictions in WTS, all were within an order of magnitude (the level of uncertainty assigned to these predictions in the FEIS), and measured concentrations have remained within predicted trophic levels to date. According to the FEIS, phosphorus and nitrate levels are predicted to increase in WTS until 2026, after which time concentrations are predicted to decline.

Under the CREMP, phytoplankton community sampling is also conducted at the same time as the water chemistry program. Statistically significant increases in phytoplankton biomass compared to baseline/reference were observed in flood zone lakes in 2023, and biomass appears to be trending upwards in this area since 2021 (Figure 7). These changes are consistent with FEIS predictions (Agnico Eagle, 2018b) and correspond with nutrient increases. In general, changes in phytoplankton taxa richness evaluated annually have not been statistically significant.

2023 Fish Habitat Offsets Monitoring Report Agnico Eagle Mines Ltd. - Meadowbank Complex

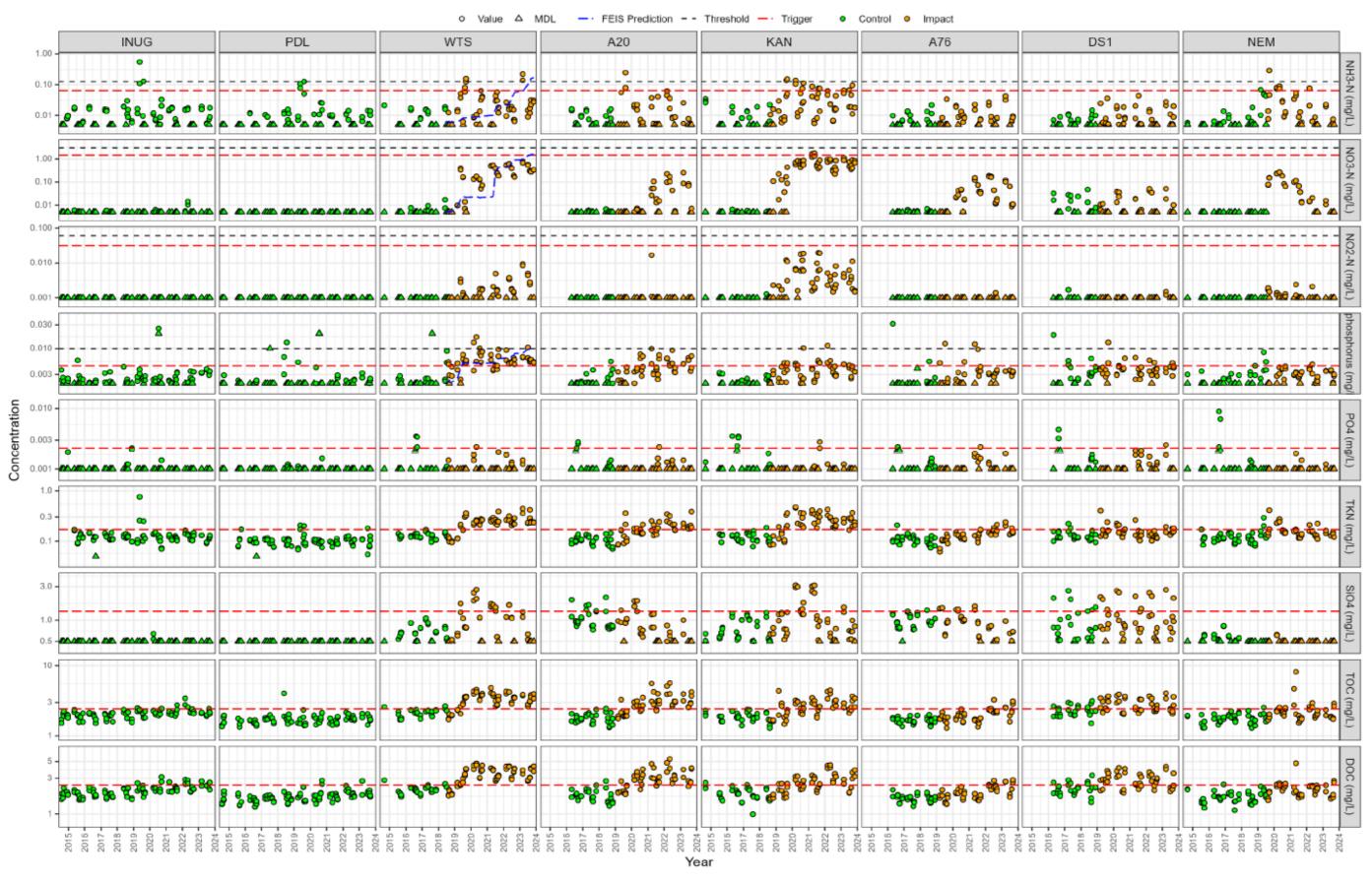


Figure 6. Nutrient parameters measured in Whale Tail Mine area lakes since 2014. Blue dashed line indicates FEIS Addendum model prediction. Figure from Azimuth (2024). Flood zone lakes are WTS and A20.

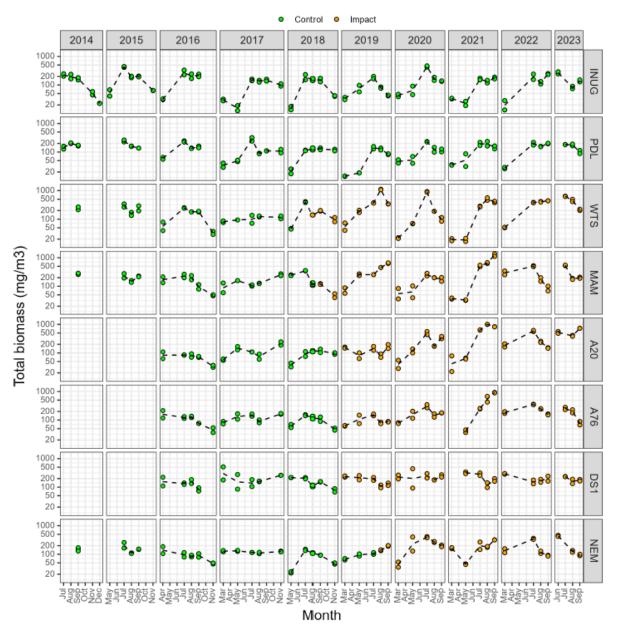


Figure 7. Total phytoplankton biomass (mg/m³) from the Whale Tail Mine study lakes since 2014. Figure from Azimuth (2024). Flood zone lakes are WTS and A20.

3.1.2.2 Periphyton Growth

3.1.2.2.1 Artificial Substrate Sampling

Sample Recovery - In total, 32 periphyton slides were deployed in each of 2022 and 2023. As described in Section 2.1.2.2.1 and Table 6, below, some loss of samplers occurred in 2022, particularly in reference lakes, and primarily due to anchor ropes detaching or breaking, or a

rapid decline in water levels that occurred from late August to early September in the flood zone lakes. No loss of Plexiglas slides from the float occurred in 2022, which was a significant improvement over 2021 pilot study methods. Anchor attachment and deployment depth were adjusted in 2023, and no sample loss occurred.

Periphyton Biomass – Results of the chlorophyll-a analysis in 2022 and 2023 are presented in Table 6 and Figure 8. While results for many reference sites in 2022 must be interpreted with caution and are excluded from data presented in Figure 8 (see comments in Table 6), it is clear that seasonal periphyton growth as represented by chlorophyll-a analysis was greater in the flood zone than reference lakes, and growth was apparently greater in WTS than A20.

CREMP results in 2022 and 2023 indicated a similar trend, with increased concentrations of both nutrients and phytoplankton biomass (Figures 6 and 7) in flood zone lakes compared to baseline/reference (Azimuth, 2024; as described in Section 3.1.2.1). Similar to periphyton results, water-column concentrations of chlorophyll-a were also apparently greater in WTS compared to A20 in 2022 and 2023 (Figure 9). These observations are in line with 2018 FEIS Addendum predictions for increased nutrient concentrations (e.g. total phosphorus predictions as shown in Figure 6) and primary productivity in WTS during mine operations (not quantified; Agnico Eagle, 2018b).

Results from the 2021 pilot study are not compared directly here, but three samples were collected in WTS, and mean chlorophyll-a was measured at 0.064+/-0.029 µg/cm². Only one sample result was available from INUG in the pilot study year and chlorophyll-a was not detectable.

	Station	Sample		20	22		202	23	
Lake	ID	ID	Chlor-a (µg/cm²)	Dates	Comments	Chlor-a (µg/cm²)	Dates	Comments	
		WTS-1-a	0.148			0.124		Thick (3 mm) and	
	WTS-1	WTS-1-b	0.169	July 4 -	Visible light brown	0.095	June 29	even on both sides of the sample slide. Brown colour.	
	WIS-1	WTS-1-c	0.136	Sept 11	periphyton.	0.117	- Sept 7		
Whale Tail		WTS-1-d	0.127			0.108			
South		WTS-2-a	0.107			0.085		Thick (3 mm) and	
	WTS-2	WTS-2-b	0.204	July 4 - Sept 11	Visible darker brown	0.186	June 29 - Sept 7	even on both sides	
	WI 3-2	WTS-2-c	0.17		periphyton.	0.152		of the sample slide.	
		WTS-2-d	0.201			0.114		Brown colour.	
		A20-1-a	(ND)		Invalid samples -	0.070			
	A20-1	A20-1-b	(ND)	July 4 -	Slides in contact with	0.042	June 29	Minimal visible	
A20 -	A20-1	A20-1-c	(0.003)	Sept 11	substrate due to rapid drop in water	0.044	- Sept 7	periphyton.	
		A20-1-d	(0.034)		level.	0.055			
A20		A20-2-a	0.023		Minimal visible periphyton.	0.035	June 29		
	A20-2	A20-2-b	0.009	July 4 -		0.054		Minimal visible periphyton.	
	A20-2	A20-2-c	0.016	Sept 11		0.042	- Sept 7		
		A20-2-d	ND			0.037			
		B03-1-a	(0.003)		Invalid samples - Samplers found	0.001			
	B03-1	B03-1-b	(0.005)	July 9 -	onshore at mid- season check (Aug	0.001	June 30	Minimal visible	
B03	200 1	B03-1-c	(0.004)	Sept 15	18), and re-deployed. A few bright green	0.001	- Sept 8	periphyton.	
		B03-1-d	(0.002)		patches.	0.000			
		B03-2-a	ND	huhu O	Minimal periphyton	0.002			
	B03-2	B03-2-b	ND	July 9 - Sept 15	(a few green	0.002	June 30 - Sept 8		
		B03-2-c	ND	00000	patches).	0.003	Copro		

Table 6. Periphyton sampling dates and chlorophyll-a results for artificial substrate samplers.

	Station ID	Sample ID		20	22	2023			
Lake			Chlor-a (µg/cm²)	Dates	Comments	Chlor-a (µg/cm²)	Dates	Comments	
		B03-2-d	ND			0.002			
		INUG-1-a	ND	July 9 - Sept 11	No sampling concerns.	0.009			
		INUG-1-b	ND			0.011	June 29		
	INUG-1	INUG -1-c	(ND)		Invalid samples - Found onshore.	0.010	- Sept 9		
Inuggug-		INUG -1-d	(ND)			0.010			
ayualik		INUG -2-a	(0.001)		Invalid samples - Slides in contact with	0.009	June 29 - Sept 9	Minimal visible periphyton.	
	INUG-2	INUG -2-b	(ND)	July 9 -	substrate.	0.002			
		INUG -2-c	-	Sept 11	Minoing	0.004			
		INUG -2-d	-		Missing	0.001			

Note: Results in brackets are interpreted with caution due to various sampling concerns as described in comments, and are excluded from Figure 8.

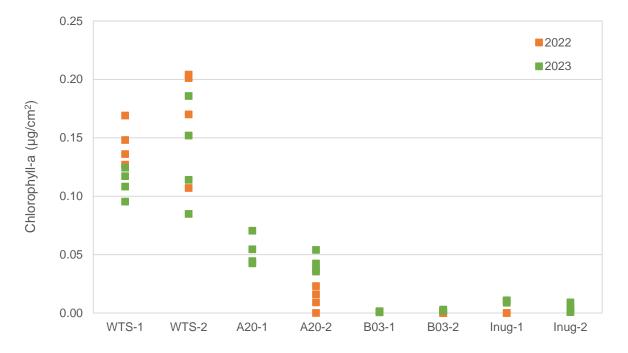


Figure 8. Periphyton chlorophyll-a on artificial substrate slides in 2022 and 2023 in flood zone areas (WTS, A20) and reference lakes (B03, Inuggugayualik).

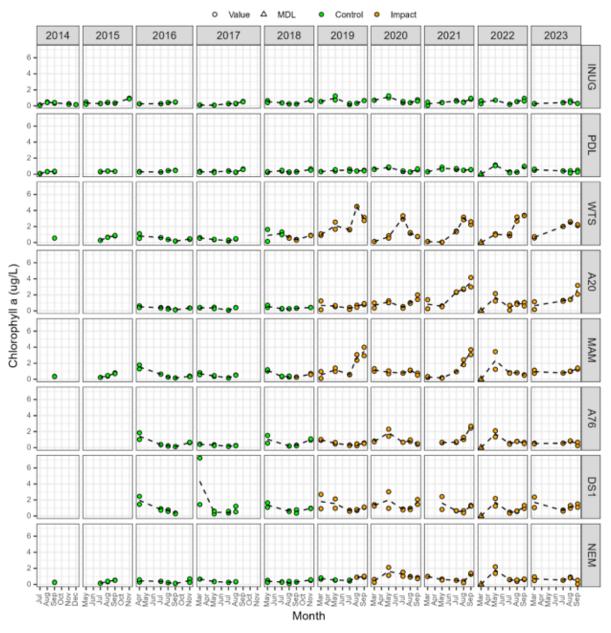


Figure 9. Water-column chlorophyll-a (ug/L) measured in Whale Tail Mine area lakes including flood zone (WTS, A20) and reference lakes (INUG, PDL) since 2014.

3.1.2.2.2 Visual Surveys

Key characteristics of the in-situ periphyton observations are summarized in Table 7. Complete visual survey results for each station are provided in Appendix B, along with site photos at both the micro and macrohabitat scale. In both 2022 and 2023, periphyton cover at the microhabitat scale (1 x 2 m patch) varied across both flood zone and reference lakes from sparse (<5%) to high (>75%), with both patchy and even coverage at the macrohabitat scale (20 m of shoreline). Nearly all periphyton was brown in colour. In 2023, thickness within the flood zone lakes was most often 2 - 3 mm (six of eight sites), while thickness in reference lakes was recorded at more than 5 mm at five of eight sites, and less than 3 mm at the other three sites. While texture in flood zone lakes was most commonly characterized as a spongy mat compared to flat/compact periphyton in reference lakes, this was determined to be a reference to the flooded tundra vegetation, rather than aquatic periphyton growth. Where periphytic growth on rocks was specified at flood zone sites, it was most commonly described as filamentous, which occurred in the same proportion of reference lake sites (3 of 8).

	Flood Zo	one Sites	Referen	ce Sites						
Characteristic	(WTS, A	20, A63)	(A44, Lake 8, B03	, Inuggugayualik)						
	2022	2023	2022	2023						
Cover (Microhabitat)	0 – 75+%	5 – 75+%	0 – 75+%	5 – 75+%						
Evenness	Both patchy and	Both patchy and	Both patchy and	Both patchy and						
(Macrohabitat)	even sites	even sites	even sites	even sites						
Colour	Brown	Brown, light brown	Brown	Brown, light brown						
Thickness	1 – 3 mm	1 – 3 mm	1 – 3 mm	5+ mm						
	(7 of 8 sites)	(8 of 8 sites)	(6 of 8 sites)	(5 of 8 sites)						
Texture	[Spongy mat* (7 of 8 sites)]	[Spongy mat* (4 of 8 sites);] Filamentous (3 of 8 sites)	Flat/compact (3 of 8 sites); Loosely attached (3 of 8 sites)	Compact, slimy, mossy (5 of 8 sites); Filamentous (3 of 8 sites)						
*[Refers to the floot text]	*[Refers to the flooded tundra vegetation, rather than aquatic periphyton growth. See discussion in									

Table 7. Periphyton visual surveys – summary of dominant results for flood zone and reference sites in 2022 and 2023.

In the baseline phase (2015) visual observations were recorded for three sites in Whale Tail Lake (South Basin) in June and September (along with additional sites in Kangislulik (Mammoth) Lake and Nemo Lake, not included here). Results of the September 2015 surveys in WTS (Agnico Eagle, 2016; Appendix 6-G) are summarized in Table 8, in comparison to WTS results for 2022 and 2023, which were also collected in September. While observations of cover type, evenness, and texture appeared similar between years, colour was categorized as green (muddy or olive) during the baseline survey, and brown during the post-flood surveys. No photos were available for the baseline period surveys, so further interpretation of this apparent difference is difficult. However, periphyton colour in reference lakes in 2022 and 2023 was also mainly identified as brown, so it may be an artifact of the subjective evaluation.

	Whale Tail Lake	e – South Basin		
Characteristic	2015 (3 sites)	2022 / 2023 (4 sites/year)		
Cover (Microhabitat)	Moderate 25 – 75%) to high (>75%)	Moderate 25 – 75%) to high (>75%)		
Evenness (Macrohabitat)	Even	Both patchy and even sites		
Colour	Muddy or olive green, lighter patches	Brown		
Thickness	"fairly thick" or not recorded	1 – 3 mm (7 of 8 observations)		
Texture	Fine growth, some tufts, poorly attached	Filamentous or flat		

Table 8. Summary of results for periphyton visual surveys in WTS during the baseline period(2015) and post-flood (2022 and 2023).

Overall, results of the periphyton analyses suggest that over the past two years, seasonal growth has been greater in flood zone lakes than reference lakes (artificial substrate sampling, Figure 8). Accumulated biomass thickness as estimated in visual surveys may still be somewhat less in newly flooded habitat than reference sites (Table 7; 3 mm or less in most sites, compared to 5 mm or more in most sites) but this only occurred in 2023. Thickness as estimated from visual observations was similar across flood zone and reference sites in 2022. Thickness was not quantified in baseline surveys. While visual assessments for cover, evenness, colour, and texture are more subjective, results of these analyses did not indicate any major or consistent differences between current flood zone sites and baseline/reference sites.

3.1.2.3 Fish Use

3.1.2.3.1 Shoreline Habitat (Habitat Types 2 & 3)

Catch-per-unit effort (CPUE) and length-frequency results for electrofishing surveys conducted from 2021 – 2023 (FHOMP study years) are provided here. Raw data is provided in Appendix C. Fish surveys also occurred from 2018 – 2020 as part of complementary measures research program (Section 3.2.2), and complete results incorporating data across all study years will be available following research study completion (est. end 2024).

Total catch of fish captured through backpack electrofishing of shoreline habitat annually from 2021 - 2023 is provided in Table 9, and catch-per-unit effort is shown in Figure 10. From 2021 to 2023, both Ninespine Stickleback and Slimy Sculpin appear to have been present in flooded shoreline habitat at rates no lower than reference lakes, on average.

2023 Fish Habitat Offsets Monitoring Report Agnico Eagle Mines Ltd. - Meadowbank Complex

Tail South	NSSB 15 16 3	SLSC 32 29	Other LKTR, RNWH, BURB, ARCH -	NSSB 29 66	SLSC 25	Other Unknown	NSSB 44	SLSC 37	Other LKTR
	16	29				Unknown	44	37	LKTR
			-	66	24				
	3				34	-	59	30	BURB, LKTR
		12	LKTR, RNWH, ARCH,	NF	NF	-	NF	NF	-
	19	6	ARCH	12	35	-	16	32	RNWH, LKTR
ulik oth)	32	31	-	13	35	BURB, LKTR	0	54	LKTR
	NF	10	ARCH, Sal.	0	34	LKTR	0	51	LKTR
	4	8	LKTR	33	12	BURB, Unknown	7	29	LKTR
	9	30	ARCH, LKTR, BURB	1	38	-	2	31	LKTR
98 158 - 154 213 - 94 261		261	-						
	oth)	oth) 32 NF 4 9	32 31 NF 10 4 8 9 30	oth) 32 31 - NF 10 ARCH, Sal. 4 8 LKTR 9 30 ARCH, LKTR, BURB	oth) 32 31 - 13 NF 10 ARCH, Sal. 0 4 8 LKTR 33 9 30 ARCH, LKTR, BURB 1	oth) 32 31 - 13 35 NF 10 ARCH, Sal. 0 34 4 8 LKTR 33 12 9 30 ARCH, LKTR, BURB 1 38	oth) 32 31 - 13 35 BURB, LKTR NF 10 ARCH, Sal. 0 34 LKTR 4 8 LKTR 33 12 BURB, Unknown 9 30 ARCH, LKTR, BURB 1 38 -	oth) 32 31 - 13 35 BORB, LKTR 0 NF 10 ARCH, Sal. 0 34 LKTR 0 4 8 LKTR 33 12 BURB, Unknown 7 9 30 ARCH, LKTR, BURB 1 38 - 2	oth) 32 31 - 13 35 BORB, LKTR 0 54 NF 10 ARCH, Sal. 0 34 LKTR 0 51 4 8 LKTR 33 12 BURB, Unknown 7 29 9 30 ARCH, LKTR, BURB 1 38 - 2 31

Table 9. Total catch of Ninespine Stickleback, Slimy Sculpin and other fish by-catch from shoreline electrofishing. Note: Results for Kangislulik (Mammoth) Lake are provided here for reference, but are not specifically evaluated as part of the FHOMP study.

Bycatch ID: LKTR = lake trout, RNWH = round whitefish, BURB = burbot, ARCH = Arctic char, Sal. = Salmonid

2023 Fish Habitat Offsets Monitoring Report Agnico Eagle Mines Ltd. - Meadowbank Complex

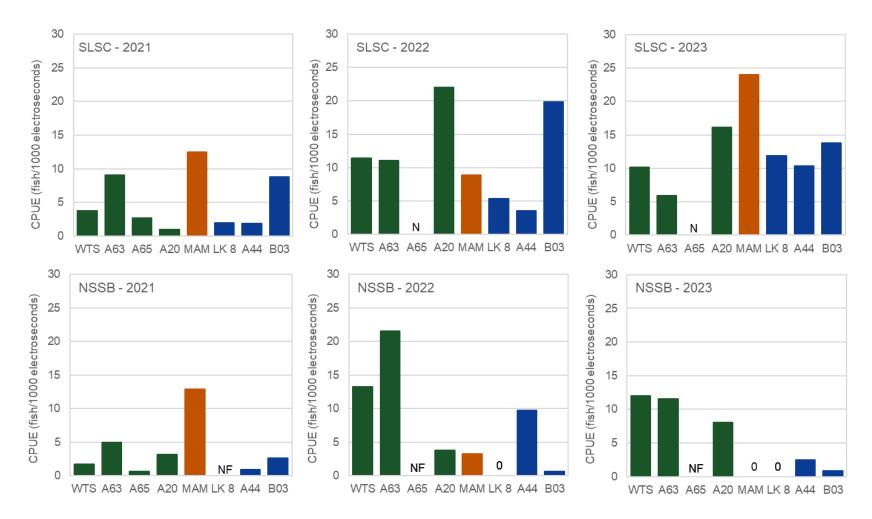


Figure 10. Catch per unit effort of Slimy Sculpin and Ninespine Stickleback collected from 2021 - 2022 in the study lakes (green = flooded, orange = downstream, blue = reference). NF = not fished.

Length-frequency distributions for Slimy Sculpin and Ninespine Stickleback are provided in Figures 11 and 12. It is noted that Ninespine Stickleback were not the primary target species, and relatively few were captured in reference lakes. No major differences in the shapes of length-frequency distributions between flood and reference lakes are evident.

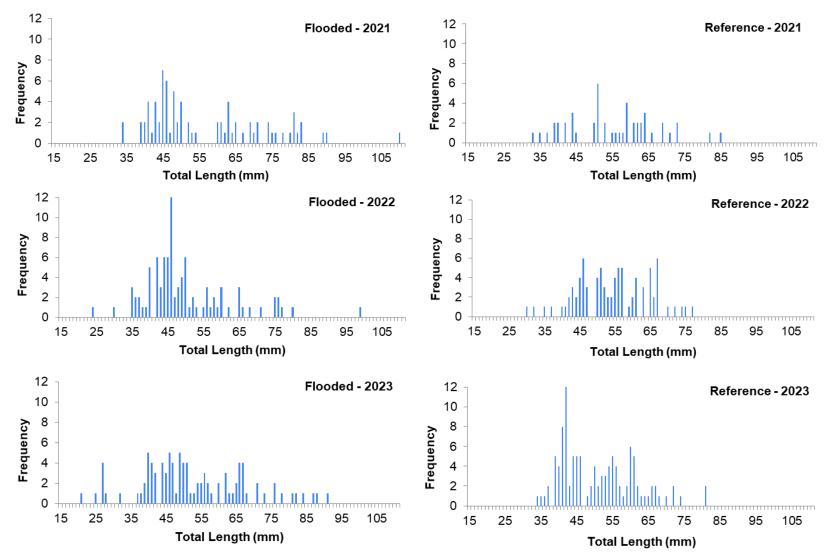


Figure 11. Length-frequency distributions for Slimy Sculpin collected in flooded lakes (WTS, A20, A63, A65) and reference lakes (A44, B03, Lake 8).

2023 Fish Habitat Offsets Monitoring Report Agnico Eagle Mines Ltd. - Meadowbank Complex

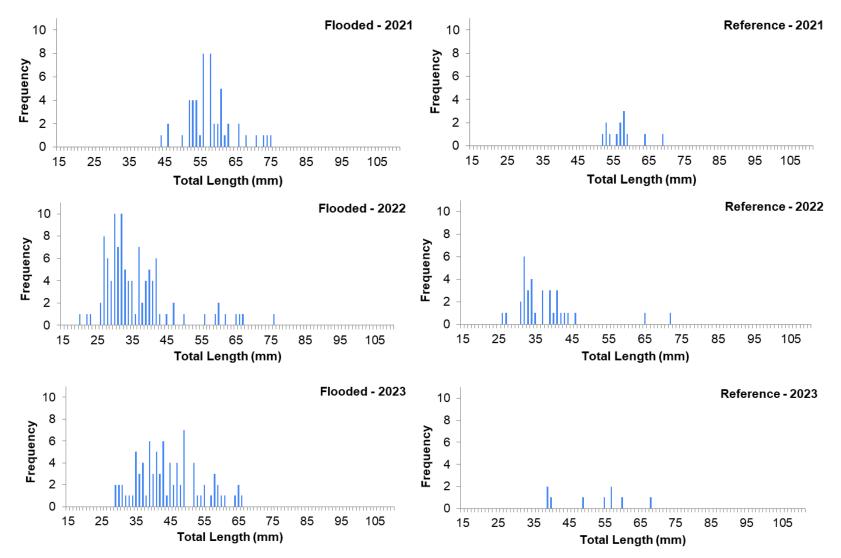


Figure 12. Length-frequency distributions for Ninespine Stickleback collected in flooded lakes (WTS, A20, A63, A65) and reference lakes (A44, B03, Lake 8).

3.1.2.3.2 Pelagic Habitat (Habitat Types 6 & 9)

3.1.2.3.2.1 Underwater Camera

Observations from underwater video recorded at high-potential lake trout spawning locations in 2023 are summarized in Table 10. Fish were identified at both the WTS and A20 stations, and in 19 of 21 individual camera sets. Lake trout specifically were observed in nine of fourteen sets in WTS, but only in two of seven sets in A20. Cameras were set earlier in the month in WTS (beginning August 30) compared to A20 (beginning September 13). Lake trout spawning activity may have been declining by the time they were set in A20, as water temperatures had decreased to 7°C by September 7, which is below the literature-estimated optimal spawning range of approximately 9 - 13°C (Table 11).

In all cases where observations were recorded, fish were seen swimming across the image, and in several cases multiple fish were observed together. No spawning-specific behaviours were observed (e.g. releasing gametes, shuddering/gaping). This is similar to results of baseline video surveys in 2016, when two instances of following were noted, but no spawning-specific behaviours. Following is a component of lake trout spawning behaviour, but it doesn't necessarily only occur during spawning.

In general, these results confirm the ongoing presence of lake trout in areas that were identified as having high potential for spawning under baseline conditions (Whale Tail South station), as well as in new potential spawning locations created by flooding (A20 station). Although specific visual evidence of spawning behaviour was not identified, these results are similar to baseline observations, and both were impeded by the inability to evaluate night-time activity.

Waterbody	Date (2023)	Set ID	Video Duration (h)	# Observations & Species
		UC-1	2.00	2 - LKTR
	Aug 30	UC-2	2.20	1 – LKTR
		UC-3	1.48	4 - LKTR
		UC-1	2.07	2 – LKTR
	Sept 4	UC-2	2.13	1 - LKTR 2 – Unknown*
Whale Tail South		UC-3	1.47	-
		UC-1	2.10	1 - LKTR 3 - Unknown
	Sept 5	UC-2	2.10	4 – Unknown
		UC-3	1.48	3 - Unknown
	Sept 7	UC-1	1.22	2 - Unknown 1 - RNWH

Table 10. Underwater video camera survey dates and number of fish observations (*multiple fish noted in at least one observation). All video was recorded during daylight hours. Cameras were generally set in one location in WTS (UC 1 to 3) and one location in A20 ((UC 4 to 9) see Figure 1).

Waterbody	Date (2023)	Set ID	Video Duration (h)	# Observations & Species
		UC-2	1.83	1 - LKTR
		002	1.00	10 – Unknown
		UC-3	0.95	1 – Unknown*
		UC-2	2.18	1 - LKTR
	Sept 9			3 - LKTR
	Sept 9	UC-3	1.92	6 – NSSB*
				9 – Unknown*
		UC-8	1.95	1 - ARCH
	Sept 13	UC-9	1.97	-
				1 - LKTR
		UC-10	2.45	1 – RNWH*
				1 – ARCH
A20	Sept 15	UC-6	2.10	3 - RNWH
	Sept 15	UC-7	1.98	1 – RNWH
				1 - LKTR
	Sept 18	UC-5	2.03	2 - RNWH
				1 - Unknown
	Sept 19	UC-4	2.52	1 - RNWH

Table 11. Measured water temperatures at approximately 2 m depth in flood zone lakes WTS and A20 in August and September, 2023 (from Azimuth, 2024).

Waterbody	August 17, 2023	September 7, 2023
WTS	17°C	7°C
A20	14°C	7°C

3.1.2.3.2.2 Gillnetting

Total catch, soak time, and calculated total catch per unit effort (CPUE) are provided for all net sets in FHOMP study lakes in Table 12. Soak time was field-determined with the objective of capturing 25 lake trout and minimizing incidental mortalities. Final times varied from 12 – 20 h per net set, and all sets were overnight (Table 5).

For all sets, CPUE (across species) in flood zone lakes (WTS and A20) was greater than reference lakes (Lake 8 and Lake 1).

Table 12. Gillnet soak times, total catch, and calculated CPUE (fish/h). Note: Results for Kangislulik (Mammoth) Lake are indicated here for reference, but are not specifically included in the FHOMP analysis.

Waterbody	Net Set ID	Soak Time (h)	Lake Trout	Arctic Char	Round Whitefish	Total Count	CPUE (fish/h)
Whale Tail South	Net 1	12.97	30	1	23	54	4.16
	Net 2	13.63	50	0	26	76	5.57

Waterbody	Net Set ID	Soak Time (h)	Lake Trout	Arctic Char	Round Whitefish	Total Count	CPUE (fish/h)
A20	Net 1	11.67	27	1	25	53	4.54
A20	Net 2	12.75	26	0	27	53	4.16
Lake 8	Net 1	20.00	16	2	0	18	0.90
Lake o	Net 2 20.50	20.50	16	2	0	18	0.88
Lake 1	Net 1	20.17	25	4	5	34	1.69
	Net 2	20.30	16	5	3	24	1.18
Kangislulik	Net 1	13.75	24	1	10	35	2.47
(Mammoth)	Net 2	14.90	18	0	8	26	1.74

Basic characteristics of the captured lake trout populations are summarized by waterbody in Tables 13 and 14, and Figure 13. Additional raw data (liver, gonad, stomach content, and DELTs analysis) is provided in Appendix C.

Overall, the length of fish in flood zone lakes was similar to reference Lake 8, though WTS had a greater proportion of smaller-sized fish than the other locations. Reference Lake 1 lake trout were, on average, larger than those from the flood zone lakes and reference Lake 8. The proportion of mature female lake trout that were reproducing (ripe) during the study was higher in WTS than in the other lakes.

Further interpretation of these data is included in the *Impact Analysis of Fish Habitat from Flooding*, to be provided to DFO under separate cover in 2024 in fulfillment of Condition 5.3.1 of FAA 20-HCAA-00275.

2023 Fish Habitat Offsets Monitoring Report Agnico Eagle Mines Ltd. - Meadowbank Complex

Waterbody	n	Avg. Length (mm)	Max. Length (mm)	Min. Length (mm)	Avg. Weight (g)	Max. Weight (g)	Min. Weight (g)	Avg. Condition (unitless)	Max. Condition (unitless)	Min. Condition (unitless)
Whale Tail South	45	353	878	131	921	8760	21	1.2	1.4	0.91
A20	27	420	749	236	1078	4731	126	1.1	1.4	0.75
Lake 8	31	360	520	134	675	1510	24	1.0	1.3	0.84
Lake 1	33	516	861	180	2166	8660	64	1.1	1.3	0.94
Kangislulik (Mammoth)	31	359	876	146	789	8430	33	1.1	1.3	0.90

Table 13. Average, maximum, and minimum length, weight, and Fulton's condition factor (K) for lake trout caught through gillnetting in 2023.

Table 14. Sex, maturity, and reproductive status (ripe vs resting) among lake trout caught through gillnetting in 2023.

	n		MalarEamala		Males			Females			
Waterbody	(Total # Captured)	# Sex Undetermined	Male:Female %	Total #	% Mature (# fish)	% Ripe (# fish)	Total #	% Mature (# fish)	% Ripe (# fish)		
Whale Tail South	45	17	50:50	14	71 (10)	20 (2)	14	43 (6)	67 (4)		
A20	27	3	58:42	14	64 (9)	67 (6)	10	0	0		
Lake 8	31	10	43:57	9	56 (5)	0	12	58 (7)	0		
Lake 1	33	5	32:68	9	56 (5)	0	19	37 (7)	14 (1)		
Kangislulik (Mammoth)	31	6	44:56	11	55 (6)	0	14	29 (4)	25 (1)		

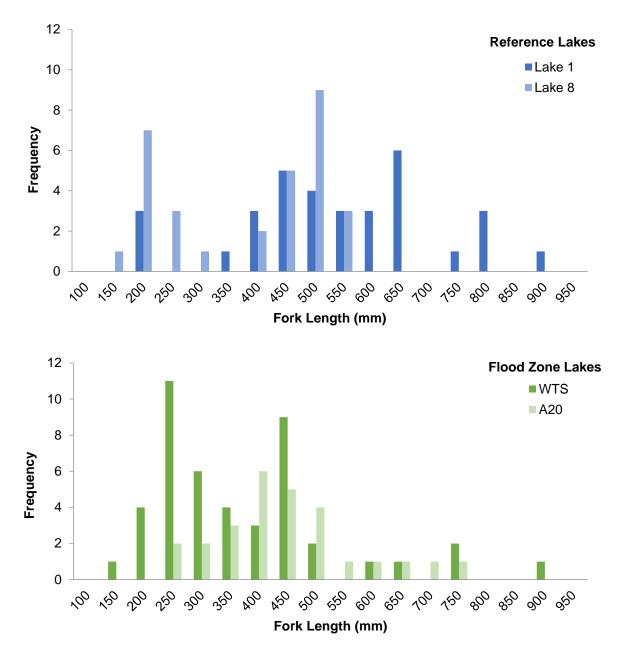


Figure 13. Length-frequency distributions for lake trout caught in gillnets set in Whale Tail flood zone and reference lakes in 2023.

3.2 COMPLEMENTARY MEASURES

An update is provided here on activities of the MFRAG along with a summary of progress for each research study in 2023. Full research methods are documented in annual progress reports provided to DFO by May 30 annually.

3.2.1 Activities of the MFRAG

As part of the Fish Habitat Offsetting Plan for Whale Tail Mine (C. Portt and Associates, 2018a), the MFRAG was conceptualized to provide a forum for input from key stakeholders. The MFRAG meets annually to review project progress reports, propose and approve or reject new projects or project components, and assess whether criteria for success have been met.

In 2019, Agnico Eagle confirmed interest in MFRAG participation by DFO, the Kivalliq Inuit Association (KivIA), and the Baker Lake Hunters and Trappers Organization (BLHTO). As planned in the Fish Habitat Offsetting Plan for Whale Tail Mine, Appendix C (C. Portt and Associates, 2018a), Agnico Eagle also identified a third party external advisor (Dr. Kelly Munkittrick, University of Calgary) who will participate in all MFRAG activities. A draft Memorandum of Understanding and Terms of Reference (TOR) were developed by Agnico Eagle and reviewed by all parties. The initial meeting of the MFRAG was held on December 12, 2019 in Montreal, Quebec. Representatives from all member groups were in attendance. The group received presentations by lead researchers involved in each study, and had the opportunity for questions, comments, and open discussion. Each MFRAG member group was requested to provide written comments, if any, by February 28, 2020. Written comments were distributed to research study leads for consideration.

In 2020, the MFRAG TOR were finalized, and signed by all parties as of March, 2021. The second annual meeting of the MFRAG was held by video conference due to COVID restrictions on December 2, 2020, with all member groups participating (Agnico Eagle, DFO, KivIA, BLHTO). As in 2019, the group received presentations by lead researchers involved in each study, and had the opportunity for questions, comments, and open discussion. Each MFRAG member group was requested to provide written comments, if any, by January 13, 2021. Written comments were again distributed to all member groups and the research study leads for consideration. No major concerns with research study progress were raised during the meeting or in follow-up comments.

In 2021, the third annual meeting of the MFRAG was held by video conference due to COVID restrictions on December 14, 2021, with all member groups participating. As in previous years, the group received presentations by lead researchers involved in each study, and had the opportunity for questions, comments, and open discussion. Each MFRAG member group agreed to provide written comments, if any, by January 25, 2022. Written comments were again distributed to all member groups and the research study leads for consideration. No

major concerns with research study progress were raised during the meeting or in follow-up comments.

In 2022, the fourth MFRAG meeting was held by video conference on November 18, 2022, with all member groups participating. The meeting format was the same as previous years. In advance of the meeting, all member groups received the previous year's Annual Progress Report, along with a non-technical summary in English and Inuktitut, and had the opportunity for questions, comments, and open discussion with the research teams. For Study 2 - Assessment of Impacts of the Baker Lake Wastewater Outflow on Fish Productivity and Fish Habitat (H. Swanson), a change in objectives was proposed to accommodate a delayed construction schedule for upgrades to the Baker Lake municipal wastewater treatment system. All MFRAG member groups were requested to provide written comments, if any, by December 16. Comments from DFO/KIA were received on December 23. Comments were also received from the external advisor, and were distributed to all parties and researchers for consideration.

In 2023, the fifth MFRAG meeting was held by video conference on December 12, with all member groups participating. As required every three years, the MFRAG Terms of Reference were reviewed, with no comment from any party. In advance of the meeting, all member groups received the previous year's Annual Progress Report, along with a non-technical summary in English and Inuktitut. Progress of each research study was presented by the lead researcher, and MFRAG parties had the opportunity for questions, comments, and open discussion with the research teams. Each MFRAG member group agreed to provide written comments, if any, by January 26, 2024. Written comments were only received from the external advisor, and were distributed to all member groups and the research study leads for consideration.

3.2.2 Study 1 - Assessment of Changes in Aquatic Productivity and Fish Populations Due to Flooding (H. Swanson)

3.2.2.1 Research Objectives

This research study aims to understand changes in small-bodied fish metrics indicative of population productivity during and after flooding in the Whale Tail Lake area. Changes in productivity will be related to water quality variables and qualitatively related to habitat characteristics.

3.2.2.2 Research Methods & Summary of Activities

In 2018, 2019, 2020, and 2021 the study focused on the collection of baseline data (2018) and flooding year 1, 2, and 3 data (2019, 2020, 2021) for small-bodied fish species (Slimy Sculpin, Ninespine Stickleback) within the Whale Tail South area. Shoreline electrofishing was completed for small-bodied fish in up to 8 waterbodies in the area of Whale Tail Lake: Whale Tail Lake, Kangislulik (Mammoth) Lake, A63, A20, A65, A44, B03, and Lake 8 (Figure 14).

Monitoring endpoints that were selected for analysis (statistical or visual) include catch per unit effort, proportional catch, length, weight, condition, age, weight-at-age, and isotopes of carbon and nitrogen as indicators of carbon source and lipid content.

In addition, the University of Waterloo team collected annual supplemental water quality data, which will be used to support the interpretation of fish population data. Water quality data collected under compliance monitoring programs will similarly be used in this assessment.

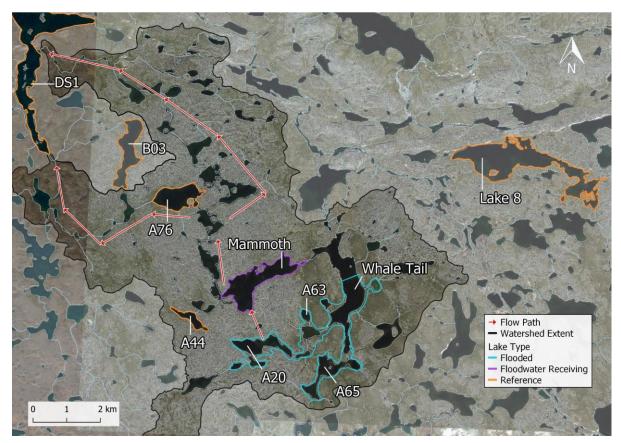


Figure 14. Whale Tail Productivity study area (Mammoth Lake is now referred to as Kangislulik Lake).

3.2.2.3 Study Completion

This study was scheduled for completion (final journal article submission) in 2022. However, due to COVID-related delays, a two-year extension is currently anticipated, with final journal article submission in 2024. Preliminary results were presented at the 2023 MFRAG meeting. The final field season was completed on time as originally scheduled, in 2021.

3.2.3 Study 2 – Assessment of Impacts of the Baker Lake Wastewater Outflow on Fish Productivity and Fish Habitat (H. Swanson)

3.2.3.1 Research Objectives

A research program lead by Dr. Rob Jamieson (Dalhousie University) is underway to assess the current status of the wastewater treatment system in the hamlet of Baker Lake and develop designs for upgrades. This study was awarded an NSERC Collaborative Research and Development grant (NSERC-CRD) in 2019 to supplement funding from Agnico. As part of this holistic assessment, key questions related to understanding fish health, fish habitat, nutrient status and fish productivity are included as offsetting for the Whale Tail Mine. The fish and fish habitat portion of the study is being conducted by Dr. Heidi Swanson (Laurier University, formerly the University of Waterloo).

The following goals specific to fish and fish habitat were originally developed:

- 1. Quantify the current fish habitat, fish health and fish productivity in the Arctic wastewater system.
- 2. Quantify changes in fish habitat, fish health and fish productivity associated with Arctic wastewater treatment system upgrades.

However, due to a longer timeline than originally anticipated for construction of a new municipal wastewater facility, the following revised goals were proposed to the MFRAG in 2022, along with specific revised objectives:

- 1. Quantify the current fish habitat, fish health and fish productivity in the Arctic wastewater system (extended pre-construction assessment).
- 2. Develop and delivery training activities to support community-lead environmental monitoring programs for the post-construction period, tailored to the interests of community organizations.

Having received agreement from the MFRAG, the revised project objectives were presented to NSERC for consideration and approved. Changes to planned study activities are presented briefly, below, and the complete revised study plan was provided in the 2022 Annual Progress Report to DFO (May 30, 2023).

3.2.3.2 Research Methods & Summary of Activities

General study methods follow Environmental Effects Monitoring (EEM) protocols to assess changes in large-bodied fish population health and habitat that occur as a result of wastewater treatment outflow. Supplemental methods similar to those employed in Study 1 will be used to further assess changes in productivity in small-bodied fish, which may occur under shorter

time frames. Specific target lakes include those within the current wastewater flow path, as well as a reference system (Figure 15). This study is focusing on:

- Finger Lake,
- Lagoon Lake,
- Airplane Lake,
- Baker Lake,
- the connecting streams, and
- reference lakes.

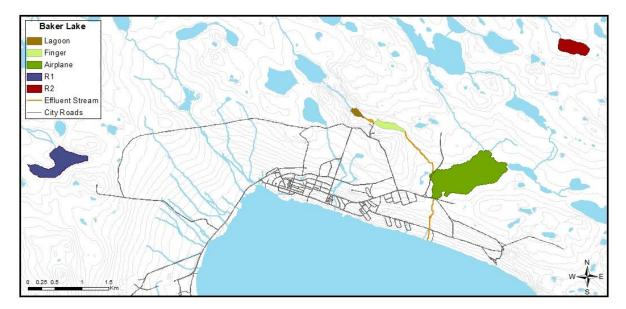


Figure 15. Baker Lake wastewater study lakes and reference lakes.

In 2018, 2019 and 2021, the University of Waterloo completed field reconnaissance and collected water quality, sediment samples, fish tissue samples, and conducted presence/absence surveys.

2018:

- Reconnaissance year
- Collected water samples and sampled fish in Finger Lake and Airplane Lake
- Evaluated potential reference sites

2019:

- Selection of reference lakes
- Shoreline electrofishing, minnow trapping, gill netting in 5 waterbodies (Lagoon, Finger, Airplane Lake, R1 and R2)

- Fish presence/ absence
- Collected Ninespine Stickleback and Arctic Grayling for health indicators, otoliths, and tissue
- Working in collaboration with University of Manitoba and Dalhousie University, collected water quality samples and submitted for analysis.

2020: Due to restrictions under the COVID-19 pandemic, the 2020 field season could not proceed. The study period has thus been extended by one year.

2021:

- Shoreline electrofishing, minnow trapping, gill netting in 5 waterbodies and the outlet of Airplane Lake (Lagoon, Finger, Airplane Lake, Airplane Lake creek, R1 and R2).
- Fish presence/ absence.
- Collected Ninespine Stickleback and Arctic Grayling for health indicators, aging structures (i.e., otoliths), and tissue.
- Collected sediment chemistry data.
- Collected periphyton and zooplankton data.
- Working in collaboration with University of Manitoba and Dalhousie University, collected water quality samples and submitted for analysis.
- Completed otolith microchemistry analysis at University of Manitoba.
- Data analysis, interpretation, thesis and manuscript writing.

2022: Ongoing data analysis. No field data collection.

- 2023: Field data collection similar to 2021, and conducted 3-d field training (year 1) in consultation with the KIA, including videography for eventual development of visual sampling protocols for community use.
- 2024 plan: Benthic invertebrate sampling and year 2 training for community-lead monitoring. Completion of MSc thesis document for fish study component.

2025 plan: Benthic invertebrate sampling (final year).

2026 plan: Completion of manuscript for benthic invertebrate study component.

3.2.3.3 Study Completion

With the proposed change in study objectives, final manuscript submissions for the fish health and habitat portion of the study is anticipated for 2025 (fish) and 2026 (benthic invertebrates).

3.2.4 Study 3 – Literature Review and Field Validation of Northern Lake Fish Habitat Preferences (S. Doka)

3.2.4.1 Research Objectives

Habitat preferences of northern fish species are not well understood, which causes significant uncertainty in habitat-based offset calculations. This study aims to:

1 - Identify literature data gaps in habitat associations of Meadowbank-area lake fishes such as Lake Trout, Arctic Char, and Round Whitefish,

2 - Field-test a variety of methods for filling data gaps.

3.2.4.2 Research Methods and Summary of Activities

This study was planned to be conducted over three years, from 2018 – 2020. Methods include a literature review, data gap analysis, and field programs to assess various sampling techniques for identifying fish habitat associations. Field surveys occurred in 2018 and 2019.

Literature Review and Gap Analysis - Following closely the Centre of Environmental Evidence guidelines for systematic literature review, a graduate student with Lakehead University under the co-supervision of Dr. Mike Rennie and Dr. Susan Doka reviewed primary and grey literature sources as well as unpublished data (e.g., Golder & Associates 2016, DFO FishOut database) on 11 northern species, including Lake Trout (*Salvelinus namaycush*) Burbot (*Lota lota*), Lake Whitefish (*Coregonus clupeaformis*), Lake Cisco (*Coregonus artedi*), Round Whitefish (*Prosopium cylindraceum*), Arctic Char (*Salvelinus alpinus*), Arctic Grayling (*Thymallus arcticus*), Slimy Sculpin (*Cottus cognatus*), Ninespine Stickleback (*Pungitius pungitius*), Dolly Varden (*Salvelinus malma*) and Bull Trout (*Salvelinus confluentus*) with current fish distributions in lakes of Nunavut and the Northwest Territories (Mandrak, et al. in review) and expert input from individuals that have been in the field in recent years (C. Portt & Associates, 2018b). The data extracted from the review has been analyzed using appropriate statistical methods to synthesize the information by life stage (3 stages: spawning, nursery, juvenile/adult habitats) for the 11 northern fish species.

Field Programs - Fisheries and Oceans in partnership with Lakehead University conducted ten days of sampling (August 20-30, 2018) in the vicinity of the Amaruq mine camp. The objective of this work was to perform reconnaissance sampling to test efficiencies and logistical challenges of using conventional methods used by scientific consultants and government researchers in the south to assess habitat and fish communities. A variety of equipment was used to meet this objective including, a multi-probe water quality sonde (EXO), passive and active fish sampling gears in both lakes and connecting channels (e.g., minnow traps, GoPro video footage, backpack electrofishing, drift nets) and hydroacoustic surveys (BioSonics MX) for physical habitat mapping (e.g., depth and substrate). The latter was conducted to complement hydroacoustic fish distribution data collected by Milne Technologies (mid-July 2018). Troubleshooting these methods in the field during 2018 informed how to

standardize methods for fish habitat sampling in the North (Arctic Region) and how to proceed with habitat and fish assessment pilot tests during the 2019 field season.

Based on year one field tests and literature review results, field work in year two (2019) focussed on pilot testing methods to fill data gaps around habitat associations for small-bodied fishes, while assessing novel or alternative sampling approaches. The 2019 field program consisted of an analysis of Visible Implant Elastomer tagging methods for use in mark-recapture studies to evaluate stream habitat preferences, as well as deep water electrofishing, near-shore electrofishing, and netting techniques. Those programs were conducted over two study periods, in late June and August/September. Analysis of the 2019 field trial results continues.

3.2.4.3 Study Completion

The MSc thesis fulfilling objective 1 of this study (literature data gap review) was completed in September, 2020 (Hancock, 2020). Final reporting for this study including results and recommendations of field trials was initially planned for 2020 but was delayed due to DFO staffing constraints under the COVID-19 pandemic. The final report submission has now been extended four years, to 2024.

3.2.5 Study 4 – Arctic Grayling Occupancy Modelling (H. Swanson)

Objectives of this work were the development of occupancy models for Arctic grayling in the Meadowbank region, and a comparison of habitat predictors in this area with those observed in the NWT. Understanding the potential for occupancy of fluvial systems by fish species based on readily measurable habitat characteristics could facilitate and improve the accuracy of environmental impact assessment and offset planning.

This study was conducted from 2018 – 2021, and final reports consist of an MSc thesis submitted to the University of Waterloo in April, 2020 (Ellenor, 2020), and a peer- reviewed manuscript published in November, 2021 (Ellenor et al., 2021). These documents contain the complete research objectives, methods, and results. Briefly, from Ellenor et al. (2021):

Visual surveys of young-of-year Arctic grayling were conducted in 48 streams near Baker Lake, Nunavut, Canada. Occupancy modeling was used to relate stream habitat and landscape variables to fish presence/absence. The best predictors of occupancy were total area of contributing upstream lakes and landcover (upland/lowland); stream basins with larger contributing upstream lake area and more lowland cover were more likely to be occupied. Results suggest that occupancy reflects reliability of stream connectivity throughout the open water season and across years. The occupancy model developed here can adequately predict stream suitability for young-of-year Arctic grayling using lake area and land classification data that are remotely accessed. This may lessen the considerable financial and logistical constraints of conducting field research on Arctic grayling in the vast Barrenlands and facilitate more directed field programs to inform conservation and mitigation plans.

Publication of the peer-reviewed manuscript fulfills this study's criteria for success, and it is now considered complete.

3.2.6 Study 5 – End-pit Lake Habitat Suitability Assessment

Fish use of re-flooded pit areas with good connectivity to natural systems is not well understood, yet these areas may represent a significant opportunity for fish habitat offsetting. Since multiple pits of various sizes at the Meadowbank Complex are planned to be reflooded in the relatively near term (2027 – 2029), there is an opportunity to thoroughly characterize fish use of pit lake habitat and population growth in re-flooded lakes through a research program. This study will aim to characterize fish use of new pit lake habitat in relation to habitat and water quality variables, and particularly in relation to reference systems. The research team and program details will be developed by the MFRAG prior to study initiation (est. 2026).

While study methods and research members will not be determined until closer to study initiation, a literature review was provided to DFO in February 2019 in fulfillment of Condition 4.2.1.3 of FAA 16-HCAA-00370.

3.2.7 Study 6 – eDNA Methods Development (J. Stetefeld and M. McDougall)

3.2.7.1 Research Objectives

eDNA methods present a potentially useful tool for rapid and non-invasive assessments of fish communities but have not been significantly developed or validated for Arctic systems. The main goal of this project is to develop and optimize monitoring tools based on eDNA metabarcoding technology to assess fish species assemblages (presence/absence and relative abundance) in the Kivalliq region.

Objectives are:

- 1. Development and optimization of the eDNA metabarcoding technique adapted for the arctic environment as a substitute for current fish species determination approaches.
- 2. Producing guidelines for handling and analyzing of samples and deliver the method and provide training to the local community.
- 3. Produce long-term reliable and precise baseline data on the distribution of aquatic associated fish species in the Amaruq mine site lakes using developed eDNA technology.

- 4. Producing data on the physiochemical properties of the lake water including dissolved mineral content to understand if any changes in stated parameters affect the eDNA/fish assemblage results.
- 5. Examine the impact of flooding Whale Tail Lake South Basin with the coincident changes in physiochemical properties of the aquatic area (e.g., increase in turbidity, dissolved solids) on the fish population using developed eDNA technique.
- 6. Collecting baseline eDNA and water quality data on lakes nearby Amaruq mine site outside the mining activity (potential candidates include B03 or DS1) and use them as a control for population changes.

3.2.7.2 Research Methods & Summary of Activities

This study involves a 5-year plan to develop and utilize an eDNA metabarcoding approach to measure fish assemblages in the Whale Tail area. Environmental DNA metabarcoding technology will be developed and optimized to detect fish species including Arctic Char, Arctic Grayling, Lake Trout, Round Whitefish, Burbot, Slimy Sculpin, Ninespine Stickleback, Hybridized Lake Trout/Arctic Char and analyze their relative abundances. For water quality data, temperature, pressure, dissolve oxygen, pH, salinity, conductivity, and dissolved metals including Cu/Zn/Cd/Fe/Hg/Mn will be measured.

The first two rounds of sampling were completed before significant in-water construction (July 2017). The second round of sampling was done in August, 2018, during construction of the Whale Tail Dike. The third round of sampling was done in August 2019, during flooding of the Whale Tail South area. Additional sampling was completed after flooding (2021). No further field programs are scheduled. The results will be used to assess the influence of mining activity on changes in fish species populations, as measured through eDNA methods.

In furthering the training objectives of this project, eDNA sampling workshops were held at the University of Manitoba in February 2019 and 2020, with 4 and 7 members of the Kivalliq Inuit community in attendance, respectively. The 3-day workshops featured of number of lecturers in the eDNA community, as well as a hands-on DNA extraction laboratory, and a foundation for further involvement of the Inuit community in eDNA sampling was laid. In the 2019 season, two of the trainees from the program also assisted in sample collection.

3.2.7.3 Study Completion

This study was substantially complete in 2023, with a research report provided to Agnico Eagle in December. Initially, one manuscript was planned to be submitted for publication in 2020 (sampling and analysis methods), with another in 2023. During manuscript preparation in mid-2023, the research team lead was advised by others in the field that the material was no longer suitable for peer-review publication, since techniques were not considered sufficiently novel at this point. In 2024, Agnico and the research team will discuss alternate

avenues for presentation of these study results, and an update will be provided to DFO and the MFRAG parties in the annual progress report (May 30, 2024).

SECTION 4 • SUMMARY AND EVALUATION OF SUCCESS

4.1 CONSTRUCTED OFFSETS

Year 3 monitoring was conducted in 2023 under the FHOMP's pre-offsetting ecological monitoring program (Agnico Eagle, 2021). Results are provided here with basic analysis. Additional assessment is included in the *Impact Analysis of Fish Habitat from Flooding*, to be provided to DFO in 2024 in fulfillment of Condition 5.3.1 of FAA 20-HCAA-00275.

In general, results of the pre-offsetting ecological monitoring program indicate:

- Suitable water quality for aquatic life within the Whale Tail flood zone;
- Seasonal growth of periphyton on introduced substrate in the flood zone at rates greater than reference sites;
- Periphyton growth on natural substrate submerged through flooding, with accumulated biomass at or approaching reference conditions;
- Presence of small-bodied fish populations in newly created shoreline habitat at rates no lower than reference areas; and
- Continued presence of large-bodied fish in deeper water habitat at rates no lower than reference areas.

4.2 COMPLEMENTARY MEASURES

Criteria for success for each research project are focussed on publication of study results in the peer-reviewed literature, or similar primary sources. In 2021, Study 4 – *Arctic Grayling Occupancy Modelling* was completed and met these criteria with manuscript submission (Ellenor et al. 2022).

As a result of COVID-related delays or restrictions, original timelines for study completion have been extended for four of the six studies (Table 15). In the interim, several studies have been presented at academic conferences, and two MSc theses publications have been completed.

Study	Study Initiation	Target Final Publication		Publications and Presentations
		Submission Date		
		Original	Current*	
Study 1: Productivity (H. Swanson)	2018	2022	2024	Ellenor, J., Portt, C., and Swanson, H.K. 2019. Variation in Slimy Sculpin (<i>Cottus cognatus</i>) monitoring endpoints at six Barrenland lakes in central Nunavut. Poster presentation. Canadian Conference for Fisheries Research on January 3- 6, 2019.
Study 2: Wastewater (H. Swanson)	2019	2021 & 2024	2025/2026	Bronte McPhedran presented preliminary findings and research methods at Young Environmental Scientists SETAC conference in Texas, on March 9-11, 2020.
Study 3: Habitat Preferences (S. Doka)	2018	2020	2024	 MSc Thesis: Hancock H., 2020. Physical habitat associations of fish species in the Kivalliq region of Nunavut, Canada. Lakehead University, Orillia, Ontario. Available at: http://ceelab.ca/wpcontent/ uploads/2020/10/Hannah final- thesis-10132020.pdf Two presentations have been given at scientific fora by the graduate student, Hannah Hancock of Lakehead University: at Canadian Conference for Fisheries Research in London ON in January, 2019 and at the American Fisheries Society -
				Ontario Chapter meeting in Orillia ON in February, 2019.

2023 Fish Habitat Offsets Monitoring Report Agnico Eagle Mines Ltd. - Meadowbank Complex

Study	Study Initiation	Target Final Publication Submission Date		Publications and Presentations
		Original	Current*	
Study 4: Arctic Grayling Occupancy (H. Swanson) - COMPLETE	2018	2021	2021	Manuscript: Ellenor, J.R., P.A. Cott and H.K. Swanson (2021). Occupancy of young-of-year Artic grayling (<i>Thymallus arcticus</i>) in Barrenland streams. Hydrobiologia (published online 15 November 2021). Available at: https://link.springer.com/article/10.1007%2Fs10750-021- 04742-3
				MSc Thesis: Ellenor, J. 2020, June. Habitat use of young-of- year Arctic Grayling (<i>Thymallus arcticus</i>) in Barrenland streams of central Nunavut, Canada. University of Waterloo, Waterloo, Ontario. Available from http://hdl.handle.net/10012/15969.
				Conference presentation : Ellenor J., Swanson, H. K., 2019. Factors influencing how Arctic Grayling (<i>Thymallus arcticus</i>) use Barrenland streams near Baker Lake, Nunavut. Platform presentation. ArcticNet Annual Scientific Meeting on December 2-5, 2019.
Study 5: End Pit Lake Habitat Use (Researcher TBD)	2027	2030-2034	2030- 2035	_
Study 6: eDNA Study (J. Stetefeld/M. McDougall)	2018	2020 (interim), 2023 (final)	2023 (report to Agnico); Public report TBD	-

SECTION 5 • NEXT STEPS

5.1 CONSTRUCTED OFFSETS

Under the FHOMP, monitoring of fish populations is not currently scheduled for 2024, and will resume following construction of the water retention sill between Lake A18 and Whale Tail Lake (planned for 2026). However, water levels will continue to be measured in the Whale Tail flood zone through piezometric measurement, and annual CREMP evaluations in Lakes A20 and WTS will continue (water quality, sediment quality, phytoplankton community, benthic invertebrate community). The final pre-offsetting monitoring phase report, *Impact Analysis of Fish Habitat from Flooding*, will be provided to DFO in fulfillment of Condition 5.3.1 of FAA 20-HCAA-00275 and next steps will be determined in consideration of review of that document.

5.2 COMPLEMENTARY MEASURES

In 2024, field programs, laboratory assessments, and/or data analysis will continue for studies 1, 2 and 3. Study 3 is planned to be completed with final report submission, and plans for publication of results from Study 6 will be determined. Study 4 was complete in 2022.

A sixth meeting of the MFRAG is planned for November or December 2024.

REFERENCES

Agnico Eagle (Agnico Eagle Mines Ltd.), 2021. Whale Tail Pit – Fish Habitat Offsets Monitoring Plan. Prepared by Agnico-Eagle Mines Ltd. – Meadowbank Division. Version 2, July, 2021.

Agnico Eagle (Agnico Eagle Mines Ltd.), 2018a. Whale Tail Pit – Fish Habitat Offset Monitoring Plan. Prepared by Agnico-Eagle Mines Ltd. – Meadowbank Division. Version 1, March, 2018.

Agnico Eagle, 2018b. FEIS Addendum for the Whale Tail Pit Expansion Project. December, 2018.

Agnico Eagle, 2016. FEIS for the Whale Tail Pit Project. June, 2016.

Azimuth (Azimuth Consulting Group Inc.), 2024. 2023 Core Receiving Environment Monitoring Program – Meadowbank Complex. Prepared for: Agnico Eagle Mines Ltd. Meadowbank Complex. Prepared by Azimuth Consulting Group Inc. March 2024.

Azimuth (Azimuth Consulting Group Inc.), 2022. Core Receiving Environment Monitoring Program (CREMP) 2022 Plan Update. Prepared for: Agnico Eagle Mines Ltd. Prepared by Azimuth Consulting Group Inc. April, 2022.

Azimuth, 2016. Core Receiving Environment Program: 2015 Update. Whale Tail Pit Addendum. Prepared by Azimuth Consulting Group Inc., Vancouver, BC for Agnico-Eagle Mines Ltd., Vancouver, BC. May, 2016.

C. Portt & Associates, 2018a. Whale Tail Pit – Fish Habitat Offsetting Plan. Prepared for Agnico Eagle Mines Ltd. March, 2018.

C. Portt & Associates, 2018b. Whale Tail Pit 2014 - 2016 Fish And Fish Habitat Field Investigations: Agnico Eagle Mines Ltd. - Meadowbank Division. February 26, 2018.

Ellenor, J.R., P.A. Cott, and H.K. Swanson. 2022. Occupancy of young-of-year Arctic grayling (*Thymallus arcticus*) in Barrenland streams. *Hydrobiologia*. 849:725–745

Ellenor, J. 2020. Habitat use of young-of-year Arctic Grayling (*Thymallus arcticus*) in Barrenland streams of central Nunavut, Canada. Partial requirements for completion of a Master of Science degree at the University of Waterloo, Waterloo, Ontario.

ERM, 2020. Whale Tail Pit Expansion Project – Fish Habitat Offsetting Plan. Project No.: 0459286-0108. Prepared for Agnico Eagle Mines Ltd. March, 2020.

Golder (Golder Associates Ltd.), 2015. Periphyton Sampling Protocol for the Amaruq Project. Technical Memorandum. June 17, 2015.

Hancock, H.M. 2020. Physical Habitat Associations of Fish Species in the Kivalliq Region of Nunavut, Canada. Partial requirements for completion of a Master of Science degree at the Lakehead University, Thunder Bay, Ontario.

APPENDIX A

Supplemental Water Quality Results

Table A-1: Supplemental wate	er quality analyses f	for non-CREMP lakes that were	1		1			
Parameter	Units	CREMP Threshold ¹	Lake 2022-09-13	2022-09-13	Lake 2022-09-05	2022-09-05	2022-09-15	ce 8 2022-09-15
			A63-1	A63-2	A44-1	A44-2	LK8-19	LK8-20
Field Measured (average of m		n depth intervals)						
Temperature pH	°C pH units	6.5 - 9	6.92 7.25	6.94 7.19	8.54 6.97	9.02	7.86	7.08 6.87
Conductivity	uS/cm	0.5 - 9	81.63	80.43	25.00	25.43	6.95 16.27	15.50
Dissolved oxygen	mg/L		11.64	11.93	11.84	11.39	11.12	11.60
Dissolved oxygen	%		99.00	101.08	101.50	101.45	96.30	98.43
Conventional Parameters		65.0						
pH Hardness, as CaCO3 (N)	pH units NTU	6.5 - 9	7.3 29.6	7.33 29.7	6.64 9.46	6.64 9.83	6.73 6.14	7.04 6.14
	NIC		30.8	29.4	9.02	9.20	5.82	6.07
Total alkalinity, as CaCO3	uS/cm		14	14	6.1	6.2	4.8	5.4
Carbonate, as CaCO3	mg/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bicarbonate, as CaCO3	mg/L		14	14	6.1	6.2	4.8	5.4
Hydroxide, as CaCO3 TDS	mg/L mg/L		<1.0 67	<1.0 62.3	<1.0 23.9	<1.0 24.5	<1.0 13.6	<1.0 14.9
TSS	mg/L	5	1.3	1.6	<1.0	<1.0	<1.0	<1.0
Total organic carbon	mg/L		4.05	4.17	2.06	2.16	1.44	1.65
Dissolved organic carbon	mg/L		4.02	4.24	2.86	2.74	1.92	1.9
Major lons			0.445	0.11	-0.050	0.050	-0.050	-0.050
Bromide Chloride	mg/L mg/L	120	0.115 10.1	0.11 10	<0.050 1.78	<0.050 1.91	<0.050	<0.050 0.58
Fluoride	mg/L	0.12	0.059	0.06	0.03	0.029	0.028	0.028
Potassium (SW6020B)	mg/L		2.21	2.22	0.737	0.735	0.396	0.369
Sodium (SW6020B)	mg/L		1.93	1.92	0.695	0.701	0.515	0.492
Sulfate	mg/L	128	7.00	7.11	3.06	3.06	1.67	1.92
Nutrients and Chlorophyll a Ammonia Nitrogen (as N)	mg/L	0.126	0.008	0.0058	<0.0050	<0.0050	<0.0050	<0.0050
Nitrate (as N)	mg/L mg/L	30	0.008	0.0058	<0.0050	<0.0050	<0.0050	<0.0050
Nitrite (as N)	mg/L	0.06	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Total phosphorus	mg/L	>50% above baseline	0.0163	0.0155	<0.050	<0.050	0.0028	0.0028
Dissely and a hear of the second		see above buseline	<0.050	<0.050	0.0026	0.0029	<0.050	< 0.050
Dissolved phosphorus	mg/L		0.0055 <0.050	0.0046 <0.050	<0.0020 <0.050	<0.0020 <0.050	0.0029 <0.050	0.0027 <0.050
Orthophosphate	mg/L		<0.0010	<0.0010	<0.0010	0.001	<0.0010	<0.0010
Chlorophyll a	μg/sample		1.82	1.7	0.215	0.24	0.325	0.299
Chlorophyll a	mg/L		0.00364	0.0034	0.00043	0.00048	0.00065	0.000598
Total Metals								
Aluminum Antimony	mg/L mg/L	0.1	0.136 0.00016	0.0596	0.0146	0.0249	0.0061 <0.00010	0.0126
Arsenic	mg/L	0.025	0.00018	0.00063	0.00010	0.00048	0.00010	0.0002
Barium	mg/L	1	0.0109	0.0095	0.00674	0.00693	0.00242	0.00279
Beryllium	mg/L	0.00013	<0.000100	<0.000100	<0.000100	<0.000100	<0.000100	<0.000100
Bismuth	mg/L		<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Boron	mg/L	1.5	<0.010 <0.0000050	<0.010	<0.010 <0.0000050	<0.010 <0.000050	<0.010 <0.0000050	<0.010 <0.000050
Cadmium Calcium (total)	mg/L mg/L	0.00004	7.93	7.55	2.46	2.58	1.22	1.22
Cesium	mg/L		0.000022	0.000014	<0.000010	<0.00010	<0.00010	<0.000010
Chromium	mg/L	0.005	0.002	0.0008	<0.00050	<0.00050	<0.00050	<0.00050
Cobalt	mg/L	0.00077	0.00023	0.00014	<0.00010	<0.00010	<0.00010	<0.00010
Copper Iron	mg/L mg/L	0.002	0.00053	<0.00050 0.262	0.00057	0.00058	<0.00050 0.011	<0.00050 0.028
Lead	mg/L	0.001	0.0001	0.000062	<0.00050	<0.00050	<0.00050	<0.00050
Lithium	mg/L		0.0013	0.0012	<0.0010	<0.0010	<0.0010	<0.0010
Magnesium (total)	mg/L		2.67	2.55	0.807	0.822	0.675	0.735
Manganese	mg/L	0.0044*Hardness+0.605	0.0591	0.0291	0.00264	0.00396	0.00127	0.00192
Mercury Molybdenum	mg/L mg/L	0.000026	<0.0000050 0.000124	<0.000050 0.000107	<0.000050 <0.000050	<0.000050 <0.000050	<0.000050 <0.000050	<0.000050 <0.000050
Nickel	mg/L mg/L	0.025	0.000124	0.00116	<0.00050	<0.00050	<0.00050	<0.00050
Potassium (total)	mg/L		2.29	2.22	0.752	0.751	0.36	0.374
Rubidium	mg/L		0.00354	0.00347	0.001	0.00103	0.00064	0.00067
Selenium	mg/L	0.001	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Silicon Silver	mg/L mg/L	0.00025	0.41 <0.000010	0.28	0.7 <0.000010	0.72	0.33 <0.000010	0.45
Sodium (total)		0.00025	~0.000010			0.702	0.481	0.502
Strontium			1.96	1.96	0.706	0.702		
Suonuum	mg/L mg/L	2.5	1.96 0.0588	1.96 0.0553	0.706 0.0135	0.0145	0.00566	0.00572
Tellurium	mg/L mg/L mg/L		0.0588 <0.00020	0.0553 <0.00020	0.0135 <0.00020	0.0145 <0.00020	0.00566 <0.00020	0.00572 <0.00020
Tellurium Thallium	mg/L mg/L mg/L mg/L	2.5	0.0588 <0.00020 <0.000010	0.0553 <0.00020 <0.000010	0.0135 <0.00020 <0.000010	0.0145 <0.00020 <0.000010	0.00566 <0.00020 <0.000010	0.00572 <0.00020 <0.00010
Tellurium Thallium Thorium	mg/L mg/L mg/L mg/L mg/L		0.0588 <0.00020 <0.00010 <0.00010	0.0553 <0.00020 <0.00010 <0.00010	0.0135 <0.00020 <0.00010 <0.00010	0.0145 <0.00020 <0.000010 <0.00010	0.00566 <0.00020 <0.00010 <0.00010	0.00572 <0.00020 <0.000010 <0.00010
Tellurium Thallium Thorium Tin	mg/L mg/L mg/L mg/L mg/L mg/L		0.0588 <0.00020 <0.00010 <0.00010 <0.00010	0.0553 <0.00020 <0.000010	0.0135 <0.00020 <0.00010 <0.00010 <0.00010	0.0145 <0.00020 <0.000010 <0.00010 <0.00010	0.00566 <0.00020 <0.00010 <0.00010 <0.00010	0.00572 <0.00020 <0.00010 <0.00010 <0.00010
Tellurium Thallium Thorium	mg/L mg/L mg/L mg/L mg/L	0.0008	0.0588 <0.00020 <0.00010 <0.00010	0.0553 <0.00020 <0.00010 <0.00010 <0.00010	0.0135 <0.00020 <0.00010 <0.00010	0.0145 <0.00020 <0.000010 <0.00010	0.00566 <0.00020 <0.00010 <0.00010	0.00572 <0.00020 <0.000010 <0.00010
Tellurium Thallium Thorium Tin Titanium Titangsten Uranium	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0008	0.0588 <0.00020 <0.00010 <0.00010 0.00534 <0.00010 0.000534	0.0553 <0.00020 <0.00010 <0.00010 <0.00010 0.00255 <0.00010 0.00006	0.0135 <0.00020 <0.00010 <0.00010 <0.00010 0.00049 <0.00010 0.00003	0.0145 <0.00020 <0.00010 <0.00010 0.00112 <0.00010 0.00013	0.00566 <0.00020 <0.00010 <0.00010 <0.00010 <0.00030 <0.00030 0.00010	0.00572 <0.00020 <0.00010 <0.00010 0.00010 0.00032 <0.00010 0.00002
Tellurium Thallium Thorium Tin Titanium Tungsten Uranium Vanadium	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0008	0.0588 <0.00020 <0.00010 <0.00010 0.00534 <0.00010 0.00006 <0.00006	0.0553 <0.00020 <0.00010 <0.00010 0.00010 0.00255 <0.00010 0.00006 <0.00050	0.0135 <0.00020 <0.00010 <0.00010 0.00049 <0.00010 0.00003 <0.00050	0.0145 <0.00020 <0.00010 <0.00010 0.00112 <0.00010 0.00010 0.000038 <0.00050	0.00566 <0.00020 <0.00010 <0.00010 <0.00030 <0.00030 0.00010 0.000017 <0.00050	0.00572 <0.00020 <0.00010 <0.00010 0.00032 <0.00010 0.00002 <0.0002
Tellurium Thallum Thorium Tin Titanium Tungsten Uranium Vanadium Zinc	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0008	0.0588 <0.00020 <0.00010 <0.00010 0.00534 <0.00010 0.00050 <0.00050 <0.00050	0.0553 <0.00020 <0.00010 <0.00010 0.00255 <0.00010 0.00005 <0.00006 <0.00050 <0.0030	0.0135 <0.00020 <0.00010 <0.00010 0.00010 <0.00010 <0.00010 <0.00001 <0.00003 <0.00050 <0.00050	0.0145 <0.00020 <0.00010 <0.00010 0.00112 <0.00010 0.00010 <0.00000 <0.00050 <0.00050 <0.0030	0.00566 <0.00020 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.000017 <0.00050 <0.00050	0.00572 <0.00020 <0.00010 <0.00010 0.00032 <0.00010 0.00002 <0.00050 <0.0030
Tellurium Thallium Thorium Tin Titanium Tungsten Uranium Vanadium	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0008	0.0588 <0.00020 <0.00010 <0.00010 0.00534 <0.00010 0.00006 <0.00006	0.0553 <0.00020 <0.00010 <0.00010 0.00010 0.00255 <0.00010 0.00006 <0.00050	0.0135 <0.00020 <0.00010 <0.00010 0.00049 <0.00010 0.00003 <0.00050	0.0145 <0.00020 <0.00010 <0.00010 0.00112 <0.00010 0.00010 0.000038 <0.00050	0.00566 <0.00020 <0.00010 <0.00010 <0.00030 <0.00030 0.00010 0.000017 <0.00050	0.00572 <0.00020 <0.00010 <0.00010 0.00032 <0.00010 0.00002 <0.0002
Tellurium Thallium Thorium Tin Titanium Tungsten Uranium Vanadium Zinc Zinconium	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0008	0.0588 <0.00020 <0.00010 <0.00010 <0.00010 <0.00534 <0.00010 0.00006 <0.00000 <0.0030 <0.0030 <0.0030	0.0553 <0.00020 <0.000010 <0.00010 <0.00010 <0.00255 <0.00010 0.00006 <0.00000 <0.00030 <0.0030 <0.0030	0.0135 <0.00020 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 0.00003 <0.00010 <0.00003 <0.00030 <0.0030 <0.0030	0.0145 <0.00020 <0.00010 <0.00010 <0.0010 <0.00112 <0.00010 0.000038 <0.00050 <0.0030 <0.0030 <0.0030	0.00566 <0.00020 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 0.000017 <0.00050 <0.0030 <0.0030 <0.0030 <0.0030	0.00572 <0.00020 <0.00010 <0.00010 0.00032 <0.00010 0.00002 <0.00002 <0.00050 <0.0030
Tellurium Thallum Thorium Tin Titanium Tungsten Uranium Vanadium Zinc Zinc Zirconium Sulfur Dissolved Metals Aluminum	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0008	0.0588 <0.00020 <0.000010 <0.00010 <0.00010 <0.00534 <0.00010 <0.00050 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.005	0.0553 <0.00020 <0.000010 <0.00010 <0.00010 <0.00255 <0.00010 <0.00056 <0.0030 <0.0030 <0.0030 <0.0030 <0.0020 2.42 0.0069	0.0135 <0.000010 <0.000010 <0.00010 <0.00010 <0.00010 0.00003 <0.00010 <0.00003 <0.00030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0020 <0.0020 <0.0020 <0.0020 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.0027 <0.	0.0145 <0.000010 <0.000010 <0.00010 <0.00112 <0.00010 0.000038 <0.000050 <0.0030 <0.0030 <0.0030 <0.0030 <0.0020 1.2 0.0027	0.00566 <0.000010 <0.000010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00017 <0.00017 <0.00050 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0020 <0.0020 <0.0020 <0.0024 <0.0024 <0.0024 <0.0024 <0.0024 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <	0.00572 <0.00020 <0.000010 <0.00010 <0.00010 0.00032 <0.00010 0.00002 <0.00050 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030
Tellurium Thallium Tharlium Thorium Tin Titanium Tungsten Uranium Vanadium Zinc Zirconium Sulfur Dissolved Metals Aluminum Antimony	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0008	0.0588 <0.00020 <0.00010 <0.00010 <0.00010 <0.00034 <0.00010 <0.00006 <0.00050 <0.00020 2.22 0.005 0.0005 0.00013	0.0553 <0.00020 <0.00010 <0.00010 <0.00010 <0.00255 <0.00010 0.00006 <0.00050 <0.00050 <0.00020 2.42 0.0069 0.00013	0.0135 <0.00020 <0.00010 <0.00010 <0.00010 <0.00010 0.00003 <0.00003 <0.00003 <0.00020 1.22 0.0027 <0.00010	0.0145 <0.00020 <0.00010 <0.00010 <0.00010 <0.00112 <0.00010 0.000038 <0.00050 <0.00030 <0.00020 1.2 0.0027 <0.00010	0.00566 <0.00020 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00017 <0.00050 <0.00050 <0.00020 <0.50 0.0024 <0.00010	0.00572 <0.00020 <0.00010 <0.00010 <0.00010 <0.00010 0.00032 <0.00010 <0.00050 <0.00020 0.52 0.0055 <0.00010
Tellurium Thallium Thorium Tin Tin Tungsten Uranium Vanadium Zinc Zirconium Sulfur Dissolved Metals Aluminum Antimony Arsenic	mg/L	0.0008 0.015 0.12 0.05 0.009 0.025	0.0588 <0.00020 <0.00010 <0.00010 <0.00010 <0.00034 <0.00006 <0.00006 <0.00006 <0.00000 2.22 0.005 0.00013 0.000041	0.0553 <0.00020 <0.00010 <0.00010 <0.00010 <0.00010 <0.00050 <0.00006 <0.00006 <0.00020 2.42 0.0006 0.000013 0.0006	0.0135 <0.00020 <0.00010 <0.00010 <0.00010 <0.00010 <0.00003 <0.00003 <0.00003 <0.00020 1.22 0.00020 <0.00010 0.00020 <0.00010 0.00028	0.0145 <0.00020 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 0.000038 <0.0003 <0.00020 1.2 0.00027 <0.00010 0.00028	0.00566 <0.00020 <0.00010 <0.00010 <0.00010 <0.00010 <0.00017 <0.000017 <0.000017 <0.0000017 <0.00020 <0.50 0.0024 <0.00010 0.00020	0.00572 <0.00020 <0.00010 <0.00010 <0.00010 <0.00010 <0.00002 <0.00002 <0.00002 <0.00020 <0.0020 0.52 0.0055 <0.00010 0.00018
Tellurium Thallium Thorium Thorium Tin Titanium Uranium Vanadium Zinc Zirconium Sulfur Dissolved Metals Aluminum Antimony Arsenic Barium	mg/L	0.0008 0.015 0.12 0.05 0.009 0.009 0.025 1	0.0588 <0.00020 <0.00010 <0.00010 <0.00010 <0.00054 <0.00050 <0.00050 <0.00006 <0.00000 <0.00020 2.22 0.0005 0.00013 0.00041 0.0092	0.0553 <0.00020 <0.00010 <0.00010 <0.00010 0.00255 <0.00010 0.00006 <0.00006 <0.00000 2.42 0.0069 0.00013 0.0006 0.00088	0.0135 <0.00020 <0.00010 <0.00010 <0.00010 <0.00049 <0.00003 <0.00003 <0.00003 <0.00030 <0.00020 1.22 0.0027 <0.00010 0.00028 0.00028 0.000642	0.0145 <0.00020 <0.00010 <0.00010 <0.00010 <0.00012 <0.00010 <0.000038 <0.000038 <0.00000 1.2 0.0027 <0.00010 0.00028 0.00028 0.00039	0.00566 <0.00020 <0.00010 <0.00010 <0.00010 <0.00010 <0.00017 <0.000017 <0.000017 <0.000017 <0.00000 <0.00020 <0.0024 <0.00020 0.00024 <0.00020 <0.00020 <0.00020 <0.00024 <0.00024 <0.00024 <0.00024 <0.00024 <0.00024 <0.00024 <0.00024 <0.00024 <0.00020 <0.00024 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.000	0.00572 <0.00020 <0.00010 <0.00010 <0.00010 <0.00012 <0.00010 <0.0002 <0.00020 <0.00020 0.52 0.0055 <0.00010 0.00018 0.000262
Tellurium Thallium Thorium Tin Tin Tungsten Uranium Vanadium Zinc Zirconium Sulfur Dissolved Metals Aluminum Antimony Arsenic	mg/L	0.0008 0.015 0.12 0.05 0.009 0.025	0.0588 <0.00020 <0.00010 <0.00010 <0.00010 <0.00034 <0.00006 <0.00006 <0.00006 <0.00000 2.22 0.005 0.00013 0.000041	0.0553 <0.00020 <0.00010 <0.00010 <0.00010 <0.00010 <0.00050 <0.00006 <0.00006 <0.00020 2.42 0.0006 0.000013 0.0006	0.0135 <0.00020 <0.00010 <0.00010 <0.00010 <0.00010 <0.00003 <0.00003 <0.00003 <0.00020 1.22 0.00020 <0.00010 0.00020 <0.00010 0.00028	0.0145 <0.00020 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 0.000038 <0.0003 <0.00020 1.2 0.00027 <0.00010 0.00028	0.00566 <0.00020 <0.00010 <0.00010 <0.00010 <0.00010 <0.00017 <0.000017 <0.000017 <0.0000017 <0.00020 <0.50 0.0024 <0.00010 0.00020	0.00572 <0.00020 <0.00010 <0.00010 <0.00010 <0.00010 <0.00002 <0.00002 <0.00002 <0.00020 <0.0020 0.52 0.0055 <0.00010 0.00018
Tellurium Thallium Thorium Tin Titanium Tungsten Uranium Vanadium Zinc Zinconium Sulfur Dissolved Metals Aluminum Antimony Arsenic Barium Beryllium	mg/L	0.0008 0.015 0.12 0.05 0.009 0.009 0.025 1	0.0588 <0.00020 <0.00010 <0.00010 <0.00010 <0.00534 <0.00050 <0.0030 <0.0030 <0.0030 <0.00020 2.22 0.005 0.00013 0.00041 0.0092 <0.000100	0.0553 <0.00020 <0.00010 <0.00010 <0.00010 <0.00255 <0.00010 0.00050 <0.00030 <0.00020 2.42 0.0069 0.00013 0.0006 <0.00088 <0.000100	0.0135 <0.00020 <0.00010 <0.00010 <0.00010 <0.00010 0.00049 <0.00010 <0.0003 <0.00030 <0.0030 <0.0030 <0.0030 <0.0020 1.22 0.0027 <0.00010 0.00028 0.000642 <0.000100	0.0145 <0.00020 <0.00010 <0.00010 <0.00010 <0.00112 <0.00010 0.000038 <0.00050 <0.0030 <0.00020 1.2 0.0027 <0.00010 0.00028 0.00639 <0.000100	0.00566 <0.00020 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 0.000017 <0.00050 <0.00050 <0.0030 <0.00020 <0.0024 <0.000248 <0.00010	0.00572 <0.00020 <0.00010 <0.00010 <0.00010 0.00032 <0.00010 0.00002 <0.00050 <0.0030 <0.0030 <0.0030 <0.00055 <0.00010 0.00018 0.00262 <0.000100
Tellurium Thallium Thalium Thorium Tin Titanium Uranium Vanadium Zinc Zinc Zirconium Sulfur Dissolved Metals Aluminum Antimony Artsenic Barium Beryllium Bismuth Boron Cadmium	mg/L	0.0008 0.015 0.12 0.05 0.009 0.025 1 0.00013	0.0588 <0.00020 <0.000010 <0.00010 <0.00010 <0.00534 <0.00010 <0.0030 <0.0030 <0.0030 <0.0030 0.0005 0.00013 0.00041 0.0092 <0.00050 <0.0010 <0.00050	0.0553 <0.00020 <0.00010 <0.00010 <0.00010 0.00255 <0.00010 0.00050 <0.0030 <0.0030 <0.0030 <0.0030 <0.0069 0.00069 0.00069 0.00088 <0.00013 0.0006 <0.0088 <0.000100 <0.00050	0.0135 <0.00020 <0.000010 <0.00010 <0.00010 <0.00010 0.0003 <0.00010 <0.0003 <0.0003 <0.0030 <0.0030 <0.0030 <0.0020 1.22 0.0027 <0.00010 0.00027 <0.00010 0.00028 0.00642 <0.000050 <0.0010 <0.0010 <0.00050 <0.0010 <0.0010 <0.00050 <0.0010 <0.0010 <0.00050 <0.0010 <0.0010 <0.00050 <0.0010 <0.00050 <0.0010 <0.00050 <0.0010 <0.00050 <0.0010 <0.00050 <0.0010 <0.00050 <0.0010 <0.00050 <0.0010 <0.00050 <0.0050 <0.0010 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.	0.0145 <0.00020 <0.000010 <0.00010 <0.00010 <0.00112 <0.00010 0.00038 <0.00038 <0.00030 <0.0030 <0.0020 1.2 0.0027 <0.00010 0.00028 <0.00010 <0.00028 <0.000050 <0.0010 <0.0010 <0.0010 <0.00050 <0.0010 <0.0010 <0.0010 <0.00050 <0.0010 <0.00050 <0.0010 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.	0.00566 <0.000010 <0.000010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00017 <0.00010 <0.00020 <0.0030 <0.0020 <0.0024 <0.00010 0.00024 <0.00010 <0.00024 <0.000050 <0.010 <0.00050 <0.00050 <0.00050 <0.00050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050	0.00572 <0.00020 <0.000010 <0.00010 <0.00010 0.00032 <0.00010 0.00002 <0.00050 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.00055 <0.00010 0.00018 0.00262 <0.0010 <0.000050 <0.010 <0.010
Tellurium Thallum Thorium Tin Tin Tinum Uranium Vanadium Zinc Zirconium Sulfur Dissolved Metals Aluminum Arsenic Barium Beryllium Bismuth Boron Ceadmium Cesium	mg/L mg/L	0.0008 0.015 0.12 0.05 0.009 0.025 1 0.00013 1.5 0.00004	0.0588 <0.00020 <0.00010 <0.00010 <0.00010 <0.00534 <0.00010 <0.00050 <0.00020 2.22 2.22 0.005 0.00013 0.00041 0.0092 <0.000100 <0.0000050 <0.0000050 <0.0000050 <0.000010	0.0553 <0.00020 <0.00010 <0.00010 <0.00010 <0.00255 <0.00010 <0.00050 <0.00020 2.42 0.0069 0.00013 0.00069 0.00013 0.0088 <0.000100 <0.000050 <0.010 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000010	0.0135 <0.00020 <0.00010 <0.00010 <0.00010 <0.00010 0.0003 <0.00050 <0.00020 1.22 0.0027 <0.00020 0.00020 0.00028 0.00028 0.00028 0.00028 0.00042 <0.00010 <0.000050 <0.000050 <0.0000050 <0.0000050 <0.000010	0.0145 <0.00020 <0.00010 <0.00010 <0.00010 <0.00112 <0.00010 0.00038 <0.00050 <0.00020 1.2 0.0027 <0.00010 0.00028 0.00039 <0.000100 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000010	0.00566 <0.00020 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00017 <0.00050 <0.0020 <0.0020 <0.0024 <0.00010 0.0024 <0.00010 <0.0024 <0.00010 <0.00020 <0.0024 <0.00010 <0.00020 <0.00010 <0.000050 <0.0000050 <0.0000050 <0.000010	0.00572 <0.00020 <0.00010 <0.00010 <0.00010 <0.00032 <0.00010 <0.00050 <0.00020 0.52 0.0055 <0.00020 0.52 0.0055 <0.00010 0.00010 <0.00010 <0.00010 <0.000050 <0.00010 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.000000 <0.000000 <0.000000 <0.000000 <0.000000 <0.000000 <0.000000 <0.000000 <0.000000 <0.000000 <0.000000 <0.000000 <0.000000 <0.000000 <0.000000 <0.000000 <0.000000 <0.0000000 <0.000000 <0.0000000 <0.0000000 <0.0000000 <0.0000000 <0.0000000 <0.0000000 <0.0000000 <0.0000000 <0.00000000 <0.0000000 <0.0000000 <0.0000000 <0.0000000 <0.00000000 <0.0000000 <0.00000000 <0.0000000000
Tellurium Thallum Thallum Thorium Tin Titanium Uranium Vanadium Zinc Zirconium Sulfur Dissolved Metals Aluminum Antimony Artsenic Barium Beryllium Bismuth Boron Cadmium	mg/L	0.0008 0.015 0.12 0.05 0.009 0.025 1 0.00013 1.5	0.0588 <0.00020 <0.000010 <0.00010 <0.00010 <0.00534 <0.00010 <0.0030 <0.0030 <0.0030 <0.0030 0.0005 0.00013 0.00041 0.0092 <0.00050 <0.0010 <0.00050	0.0553 <0.00020 <0.00010 <0.00010 <0.00010 0.00255 <0.00010 0.00050 <0.0030 <0.0030 <0.0030 <0.0030 <0.0069 0.00069 0.00069 0.00088 <0.00013 0.0006 <0.0088 <0.000100 <0.00050	0.0135 <0.00020 <0.000010 <0.00010 <0.00010 <0.00010 0.0003 <0.00010 <0.0003 <0.0003 <0.0030 <0.0030 <0.0030 <0.0020 1.22 0.0027 <0.00010 0.00027 <0.00010 0.00028 0.00642 <0.000050 <0.0010 <0.0010 <0.00050 <0.0010 <0.0010 <0.00050 <0.0010 <0.0010 <0.00050 <0.0010 <0.0010 <0.00050 <0.0010 <0.00050 <0.0010 <0.00050 <0.0010 <0.00050 <0.0010 <0.00050 <0.0010 <0.00050 <0.0010 <0.00050 <0.0010 <0.00050 <0.0050 <0.0010 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.	0.0145 <0.00020 <0.000010 <0.00010 <0.00010 <0.00112 <0.00010 0.00038 <0.00038 <0.00030 <0.0030 <0.0020 1.2 0.0027 <0.00010 0.00028 <0.00010 <0.00028 <0.000050 <0.0010 <0.0010 <0.0010 <0.00050 <0.0010 <0.0010 <0.0010 <0.00050 <0.0010 <0.00050 <0.0010 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.	0.00566 <0.000010 <0.000010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00017 <0.00010 <0.00020 <0.0030 <0.0020 <0.0024 <0.00010 0.00024 <0.00010 <0.00024 <0.000050 <0.010 <0.00050 <0.00050 <0.00050 <0.00050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050	0.00572 <0.00020 <0.000010 <0.00010 <0.00010 0.00032 <0.00010 0.00002 <0.00050 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.00055 <0.00010 0.00018 0.00262 <0.0010 <0.000050 <0.010 <0.010

Table A-1: Supplemental water quality analyses for non-CREMP lakes that were electrofished in 2022 (lakes A63, A44, and Lake 8).

Table A-1: Supplemental water quality analyses for non-CREMP lakes that were electrofished in 2022 (lakes A63, A44, and Lake 8).

			Lake	e A63	Lake	e A44	Lake 8		
Parameter	Units	CREMP Threshold ¹	2022-09-13	2022-09-13	2022-09-05	2022-09-05	2022-09-15	2022-09-15	
			A63-1	A63-2	A44-1	A44-2	LK8-19	LK8-20	
Iron	mg/L	0.3	0.034	0.038	0.011	<0.010	<0.010	<0.010	
Lead	mg/L	0.001	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	
Lithium	mg/L		0.0013	0.0013	<0.0010	< 0.0010	<0.0010	<0.0010	
Manganese	mg/L		0.00408	0.00503	0.00184	0.00138	0.00064	0.00106	
Mercury	mg/L	0.000026	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	
Molybdenum	mg/L	0.073	0.000093	0.000096	<0.000050	<0.000050	<0.000050	<0.000050	
Nickel	mg/L	0.025	0.00088	0.00106	<0.00050	<0.00050	<0.00050	<0.00050	
Rubidium	mg/L		0.00303	0.00328	0.00101	0.00099	0.00065	0.00055	
Selenium	mg/L	0.001	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	
Silicon	mg/L		0.132	0.162	0.684	0.678	0.295	0.397	
Silver	mg/L	0.00025	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	
Strontium	mg/L	2.5	0.0556	0.0546	0.0131	0.0139	0.00601	0.00601	
Tellurium	mg/L		<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	
Thallium	mg/L	0.0008	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	
Thorium	mg/L		<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	
Tin	mg/L		0.00037	<0.00010	<0.00010	<0.00010	0.00018	<0.00010	
Titanium	mg/L		<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	
Tungsten	mg/L		<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	
Uranium	mg/L	0.015	0.000036	0.000042	0.000026	0.000028	0.000014	0.000019	
Vanadium	mg/L	0.12	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	
Zinc	mg/L	0.004	0.0018	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	
Zirconium	mg/L		<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	

1 Azimuth (Azimuth Cansulting Group Inc.), 2022. Core Receiving Environment Monitoring Program (CREMP) 2022 Plan Update. Prepared for: Agnico Eagle Mines Ltd. Prepared by Azimuth Consulting Group Inc. April, 2022.

Table A-2: Supplemental water quality ana	lyses for non-CREMP	lakes that were electrofis	shed in 2023 (lakes B03, A63, A44).

Table A-2: Supplemental water quality analyses for non-CREMP lakes that were electrofished in 2023 (lakes B03, A63, A44). Lake A63 Lake A44 Lake A63 Lake A44								Lake B03			
Parameter	Units	CREMP Threshold ¹	2023-08-25	2023-08-25	2023-08-27	2023-08-27	2023-09-08	2023-09-08			
		CILIMF THESHOLD	A63-3	A63-4	A44-3	A44-4	B03-5	B03-6			
Field Measured (average of measurement	s at 1-m depth interv	als)									
Temperature	°C		10.41	10.40	9.02	8.83	11.55	10.40			
pН	pH units	6.5 - 9	6.79	7.08	6.23	6.34	7.90	7.73			
Conductivity	uS/cm		103.73	103.70	28.50	29.07	22.97	20.02			
Dissolved oxygen	mg/L		10.50	10.57	10.89	11.01	10.34	10.93			
Dissolved oxygen	%		96.70	97.30	96.97	97.63	99.85	102.45			
Conventional Parameters											
pH	pH units	6.5 - 9	7.37	7.36	6.85	6.91	6.94	6.97			
Turbidity	NTU		0.93	0.82	1.7	0.8 27.6	0.57	0.54			
Specific conductivity Hardness, as CaCO3-Dissolved	uS/cm mg/L		36.7	36.7	43.1 15.3	10.2	19.2 6.62	6.66			
Hardness, Calcium and Magnesium	mg/L		36.4	36.8	15.6	9.74	6.68	6.57			
Total alkalinity, as CaCO3	mg/L		19.8	19.7	6.1	6.4	6.4	6.2			
Carbonate, as CaCO3	mg/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0			
Bicarbonate, as CaCO3	mg/L		19.8	19.7	6.1	6.4	6.4	6.2			
Hydroxide, as CaCO3	mg/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0			
TDS	mg/L		62.3	60.3	33.8	21.8	16.8	17.4			
TSS	mg/L	5	<1.0	1.1	1	<1.0	1.4	<1.0			
Total organic carbon	mg/L		3.78	3.77	3.52	2.58	1.98	1.98			
Dissolved organic carbon	mg/L		3.9	3.65	3.53	2.49	1.75	1.79			
Major Ions											
Bromide	mg/L	120	0.119	0.116	<0.050	< 0.050	<0.050	<0.050			
Chloride	mg/L	120	12	11.9	1.78	1.75	0.86	0.85			
Fluoride Potassium (SW6020B)	mg/L	0.12	0.071 2.54	0.071 2.61	0.032	0.034 0.733	0.033	0.031 0.549			
Potassium (SW6020B) Silica	mg/L mg/L		<0.50	<0.50	2.82	0.733	0.556	1.26			
Sodium (SW6020B)	mg/L mg/L		2.26	2.26	0.945	0.702	0.649	0.642			
Sulfate	mg/L	128	9.56	9.58	9.92	3.58	1.51	1.46			
Nutrients and Chlorophyll a											
Ammonia Nitrogen (as N)	mg/L	0.126	0.031	0.0067	0.0074	0.0098	0.0096	0.0058			
Nitrate (as N)	mg/L	30	<0.0050	<0.0050	0.0089	<0.0050	<0.0050	<0.0050			
Nitrite (as N)	mg/L	0.06	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010			
Nitrogen, Kjeldahl	mg/L		0.263	0.243	0.128	0.117	0.114	0.112			
Total phosphorus	mg/L	>50% above baseline	0.0066	0.0078	0.0022	0.0031	0.0031	0.0033			
			<0.050	<0.050	<0.050	<0.050	<0.050	<0.050			
Dissolved phosphorus	mg/L		0.0034	0.0033	0.0038	0.0025	<0.0020	<0.0020			
0			<0.050	<0.050	<0.050	< 0.050	<0.050	<0.050			
Orthophosphate Chlorophyll a	mg/L μg/sample		<0.0010 0.891	<0.0010 0.921	<0.0010 0.312	<0.0010 0.164	<0.0010 0.677	<0.0010 0.611			
Chlorophyll a	mg/L		0.00178	0.00184	0.000624	0.000328	0.00135	0.00122			
Total Metals	1115/2		0.00170	0.00104	0.000024	0.000320	0.00135	0.00122			
Aluminum	mg/L	0.1	0.0059	0.0063	0.0567	0.0131	0.0114	0.0099			
Antimony	mg/L	0.009	0.00023	0.00023	<0.00010	<0.00010	<0.00010	<0.00010			
Arsenic	mg/L	0.025	0.00054	0.00054	0.00036	0.00046	0.00022	0.00019			
Barium	mg/L	1	0.011	0.0113	0.0139	0.00729	0.00405	0.00382			
Beryllium	mg/L	0.00013	<0.000100	<0.000100	<0.000100	<0.000100	<0.000100	<0.000100			
Bismuth	mg/L		<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050			
Boron	mg/L	1.5	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010			
Cadmium	mg/L	0.00004	<0.0000050 9.7	<0.0000050 9.8	<0.0000050	<0.0000050 2.43	<0.0000050	<0.0000050			
Calcium (total) Cesium	mg/L		9.7	9.8	3.65 0.000011	<0.000010	1.65 <0.000010	<0.000010			
Chromium	mg/L mg/L	0.005	<0.00010	<0.00012	0.00033	0.00013	<0.00010	0.00011			
chronnum	ing/L	0.005	<0.00010	<0.00010	0.00033	0.00013	<0.00010	<0.00050			
Cobalt	mg/L	0.00077	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010			
Copper	mg/L	0.002	<0.00050	<0.00050	0.0008	0.00052	<0.00050	<0.00050			
Iron	mg/L	0.3	0.094	0.094	0.124	0.069	0.045	0.047			
Lead	mg/L	0.001	<0.000050	<0.000050	0.000055	<0.000050	<0.000050	<0.000050			
Lithium	mg/L		0.0015	0.0015	<0.0010	<0.0010	<0.0010	<0.0010			
Magnesium (total)	mg/L		2.95	3	1.58	0.892	0.623	0.602			
Manganese	mg/L	0.0044*Hardness+0.605	0.0217	0.0216	0.0151	0.00754	0.00923	0.00737			
Mercury	mg/L	0.000026	<0.000050	<0.0000050	<0.000050	<0.000050	<0.000050	<0.000050			
Molybdenum Nickel	mg/L	0.073	0.000237 0.00079	0.000237 0.00084	<0.000050 0.00152	<0.000050 0.00077	<0.000050 <0.00050	<0.00050			
Nickei Potassium (total)	mg/L mg/L	0.025	2.7	2.84	0.00152	0.782	0.516	0.495			
Rubidium	mg/L mg/L		0.00397	0.00409	0.89	0.00093	0.0008	0.00086			
Selenium	mg/L	0.001	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050			
Silicon	mg/L		0.17	0.18	1.49	0.72	0.62	0.62			
Silver	mg/L	0.00025	<0.000010	<0.000010	<0.00010	<0.000010	<0.00010	<0.000010			
Sodium (total)	mg/L		2.4	2.55	1.01	0.715	0.629	0.602			
Strontium	mg/L	2.5	0.0749	0.0748	0.0234	0.0144	0.00956	0.00942			
Sulfur	mg/L		3.6	3.54	3.65	1.33	<0.50	<0.50			
Tellurium	mg/L		<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020			
Thallium	mg/L	0.0008	<0.00010	<0.00010	<0.00010	<0.000010	<0.00010	<0.000010			
Thorium	mg/L		<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010			
Tin Titanium	mg/L		<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010			
Titanium Tungsten	mg/L		<0.00030 <0.00010	<0.00030 <0.00010	0.00158	0.00047	0.00032	0.00036			
Tungsten Uranium	mg/L mg/L	0.015	<0.00010 0.00003	<0.00010 0.00003	<0.00010 0.000068	<0.00010 0.000034	<0.00010 0.00002	<0.00010			
Vanadium	mg/L	0.12	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050			
Zinc	mg/L	0.12	<0.0030	<0.0030	<0.00030	<0.0030	<0.0030	<0.0030			
Zirconium	mg/L		<0.00020	<0.00020	0.0002	<0.00020	<0.00020	<0.00020			
Dissolved Metals											
Aluminum	mg/L	0.05	0.0028	0.0033	0.0209	0.004	0.0019	0.003			
Alumnum			0.0000	0.00021	<0.00010	<0.00010	<0.00010	< 0.00010			
Antimony	mg/L	0.009	0.0002								
Antimony Arsenic	mg/L	0.025	0.00044	0.00045	0.0003	0.0005	0.00017	0.00013			
Antimony											

Table A-2: Supplemental water quality analyses for non-CREMP lakes that were electrofished in 2023 (lakes B03, A63, A44).

			Lake	e A63	Lake	e A44	Lake B03		
Parameter	Units	CREMP Threshold ¹	2023-08-25	2023-08-25	2023-08-27	2023-08-27	2023-09-08	2023-09-08	
			A63-3	A63-4	A44-3	A44-4	B03-5	B03-6	
Bismuth	mg/L		<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	
Boron	mg/L	1.5	<0.010	<0.010	<0.010	<0.010	<0.010	< 0.010	
Cadmium	mg/L	0.00004	<0.000050	<0.000050	< 0.0000050	<0.000050	<0.000050	<0.0000050	
Calcium (SW6020B)	mg/L		9.85	9.67	3.67	2.65	1.65	1.65	
Cesium	mg/L		0.00001	0.000012	<0.000010	<0.000010	<0.000010	<0.000010	
Chromium	mg/L	0.005	<0.00010	<0.00010	0.00019	<0.00010	<0.00010	< 0.00010	
							<0.00050	<0.00050	
Cobalt	mg/L	0.00077	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	
Copper	mg/L	0.002	0.00028	0.00028	0.0007	0.00054	0.00022	0.00021	
Iron	mg/L	0.3	0.03	0.032	0.062	0.014	<0.010	0.013	
Lead	mg/L	0.001	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	
Lithium	mg/L		0.0015	0.0014	< 0.0010	< 0.0010	< 0.0010	< 0.0010	
Magnesium (SW6020B)	mg/L		2.94	3.04	1.49	0.875	0.608	0.617	
Manganese	mg/L		0.00514	0.00575	0.0118	0.00353	0.00551	0.0043	
Mercury	mg/L	0.000026	<0.000050	<0.0000050	<0.000050	<0.000050	<0.000050	<0.0000050	
Molybdenum	mg/L	0.073	0.00022	0.000224	<0.000050	0.000077	<0.000050	<0.000050	
Nickel	mg/L	0.025	0.00075	0.00078	0.00131	0.00078	<0.00050	<0.00050	
Rubidium	mg/L		0.00376	0.00401	0.00102	0.00092	0.00086	0.00092	
Selenium	mg/L	0.001	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	
Silicon	mg/L		0.135	0.132	1.33	0.699	0.575	0.596	
Silver	mg/L	0.00025	< 0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	
Strontium	mg/L	2.5	0.0718	0.0727	0.0222	0.0149	0.00942	0.00884	
Sulfur (SW6020B)	mg/L		3.29	3.37	3.18	1.47	0.56	0.52	
Tellurium	mg/L		<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	
Thallium	mg/L	0.0008	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	< 0.000010	
Thorium	mg/L		<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	< 0.00010	
Гin	mg/L		<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	< 0.00010	
Titanium	mg/L		<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	< 0.00030	
Fungsten	mg/L		<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	
Uranium	mg/L	0.015	0.000026	0.000026	0.000058	0.000028	0.000017	0.000016	
Vanadium	mg/L	0.12	<0.00050	<0.00050	< 0.00050	<0.00050	<0.00050	<0.00050	
Zinc	mg/L	0.004	<0.0010	0.001	0.0016	0.0028	<0.0010	<0.0010	
Zirconium	mg/L		<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	

¹Azimuth (Azimuth Consulting Group Inc.), 2022. Core Receiving Environment Monitoring Program (CREMP) 2022 Plan Update. Prepared for: Agnico Eagle Mines Ltd. Prepared by Azimuth Consulting Group Inc.), 2022. Core Receiving Environment Monitoring Program (CREMP) 2022 Plan Update. Prepared for: Agnico Eagle Mines Ltd. Prepared by Azimuth Consulting Group Inc.), 2022.

			Ed in 2023 (Lake 8). Lake 8			
Parameter	Units	CREMP Threshold ¹	2023-08-19	2023-08-19		
			LK8-21	LK8-22		
Field Measured (average of measuremen		als)				
Temperature	°C		14.69	14.81		
pH	pH units	6.5 - 9	7.11	7.03		
Conductivity	uS/cm		16.84	16.90		
Dissolved oxygen	mg/L		9.84	9.86		
Dissolved oxygen	%		99.64	99.93		
Turbidity Conventional Parameters	NTU		1002.64	989.06		
pH	pH units	6.5 - 9	6.75	6.73		
Turbidity	NTU	0.5 - 5	0.18	0.17		
Specific conductivity	uS/cm		16.4	16.5		
Hardness, as CaCO3-Dissolved	mg/L		5.84	5.77		
Hardness, Calcium and Magnesium	mg/L		5.93	6.02		
Total alkalinity, as CaCO3	mg/L		4.3	4.4		
Carbonate, as CaCO3	mg/L		<1.0	<1.0		
Bicarbonate, as CaCO3	mg/L		4.3	4.4		
Hydroxide, as CaCO3	mg/L		<1.0	<1.0		
TDS	mg/L		16.9	18.3		
TSS	mg/L	5	1.2	<1.0		
Total organic carbon	mg/L		1.51	1.56		
Dissolved organic carbon	mg/L		1.37	1.37		
Major lons						
Bromide	mg/L		<0.050	<0.050		
Chloride	mg/L	120	0.56	0.55		
			0.56	0.55		
Cyanide	mg/L		<0.0010	<0.0010		
Cyanide (free)	mg/L		<0.0010	<0.0010		
Fluoride	mg/L	0.12	0.027	0.027		
Potassium (SW6020B)	mg/L		0.354	0.349		
Silica Sodium (SW6020B)	mg/L		0.71	0.7		
Sulfate	mg/L mg/L	128	1.57	1.55		
Nutrients and Chlorophyll a	iiig/ L	120	1.57	1.55		
Ammonia Nitrogen (as N)	mg/L	0.126	0.0092	0.0067		
Nitrate (as N)	mg/L	30	< 0.0050	< 0.0050		
Nitrite (as N)	mg/L	0.06	<0.0010	<0.0010		
Nitrogen, Kjeldahl	mg/L		0.093	0.102		
Total phosphorus	mg/L	>50% above baseline	<0.0020	0.0023		
	-		<0.050	<0.050		
Dissolved phosphorus	mg/L		<0.0020	<0.0020		
	_		<0.050	<0.050		
Orthophosphate	mg/L		<0.0010	<0.0010		
Chlorophyll a	µg/sample		0.188	0.152		
Chlorophyll a	mg/L		0.000376	0.000304		
Total Metals						
Aluminum	mg/L	0.1	0.0059	0.0051		
Antimony	mg/L	0.009	<0.00010	<0.00010		
Arsenic	mg/L	0.025	0.00019	0.00022		
Barium	mg/L	1	0.00268	0.00267		
Beryllium	mg/L	0.00013	<0.000100	<0.000100		
Bismuth	mg/L	4.5	<0.000050	<0.000050		
Boron	mg/L	1.5	<0.010	< 0.010		
Cadmium Calcium (total)	mg/L	0.00004	<0.000050	<0.0000050		
. ,	mg/L	+ +	1.25	1.27		
Cesium Chromium	mg/L	0.005	<0.000010 <0.00010	<0.000010 0.00016		
Cironium	mg/L	0.005	<0.00010	<0.00016		
Cobalt	mg/L	0.00077	<0.00030	<0.00030		
Copper	mg/L	0.002	<0.00050	<0.00010		
Iron	mg/L	0.3	0.01	<0.010		
Lead	mg/L	0.001	<0.00050	<0.00050		
Lithium	mg/L	0.001	<0.0010	<0.0010		
Magnesium (total)	mg/L		0.683	0.691		
Manganese	mg/L	0.0044*Hardness+0.605	0.00208	0.00187		
Mercury	mg/L	0.000026	<0.0000050	<0.0000050		
Molybdenum	mg/L	0.073	<0.000050	<0.000050		
Nickel	mg/L	0.025	<0.00050	< 0.00050		

Table A-3: Supplemental water quality analyses for non-CREMP lakes that were electrofished in 2023 (Lake 8	2)
Tuble A 5. Supplemental water quality analyses for non excisin fakes that were electronished in 2025 (Lake e	·••

Parameter	Units	CREMP Threshold ¹	2023-08-19	ce 8 2023-08-19	
		CILLINE THIESHOLD	LK8-21	LK8-22	
Potassium (total)	mg/L		0.376	0.371	
Rubidium	mg/L		0.0007	0.00064	
Selenium	mg/L	0.001	<0.000050	<0.000050	
Silicon	mg/L	0.001	0.32	0.32	
Silver	mg/L		<0.00010	<0.00010	
Sodium (total)	mg/L		0.514	0.511	
Strontium	mg/L	2.5	0.00594	0.00594	
Sulfur	mg/L	2.5	0.59	0.00394	
Tellurium	mg/L		<0.00020	<0.00020	
Thallium	mg/L	0.0008	<0.00020	<0.00020	
Thorium	-	0.0008	<0.00010	<0.00010	
Tin	mg/L				
	mg/L		<0.00010	<0.00010	
Titanium	mg/L		<0.00030	<0.00030	
Tungsten	mg/L	0.015	<0.00010	< 0.00010	
Uranium	mg/L	0.015	0.000016	0.000016	
Vanadium	mg/L	0.12	<0.00050	<0.00050	
Zinc	mg/L		<0.0030	<0.0030	
Zirconium Discolved Materia	mg/L		<0.00020	<0.00020	
Dissolved Metals		0.05	0.0017	0.0017	
Aluminum	mg/L	0.05	0.0017	0.0017	
Antimony	mg/L	0.009	< 0.00010	<0.00010	
Arsenic	mg/L	0.025	0.00021	0.00023	
Barium	mg/L	1	0.00258	0.00254	
Beryllium	mg/L	0.00013	< 0.000100	< 0.000100	
Bismuth	mg/L		< 0.000050	<0.000050	
Boron	mg/L	1.5	<0.010	< 0.010	
Cadmium	mg/L	0.00004	<0.000050	<0.000050	
Calcium (SW6020B)	mg/L		1.23	1.2	
Cesium	mg/L		<0.000010	<0.000010	
Chromium	mg/L	0.005	<0.00010	<0.00010	
			<0.00050	< 0.00050	
Cobalt	mg/L	0.00077	<0.00010	<0.00010	
Copper	mg/L	0.002	0.00035	0.00034	
Iron	mg/L	0.3	<0.010	<0.010	
Lead	mg/L	0.001	<0.000050	<0.000050	
Lithium	mg/L		<0.0010	< 0.0010	
Magnesium (SW6020B)	mg/L		0.673	0.673	
Manganese	mg/L		0.00038	0.00038	
Mercury	mg/L	0.000026	<0.000050	<0.000050	
Molybdenum	mg/L	0.073	<0.000050	<0.000050	
Nickel	mg/L	0.025	<0.00050	<0.00050	
Rubidium	mg/L		0.00064	0.00064	
Selenium	mg/L	0.001	<0.000050	<0.000050	
Silicon	mg/L		0.285	0.278	
Silver	mg/L	0.00025	<0.000010	<0.000010	
Strontium	mg/L	2.5	0.00562	0.00559	
Sulfur (SW6020B)	mg/L		<0.50	<0.50	
Tellurium	mg/L		<0.00020	<0.00020	
Thallium	mg/L	0.0008	<0.000010	<0.000010	
Thorium	mg/L		<0.00010	<0.00010	
Tin	mg/L		<0.00010	<0.00010	
Titanium	mg/L		<0.00030	<0.00030	
Tungsten	mg/L		<0.00010	<0.00010	
Uranium	mg/L	0.015	0.000014	0.000013	
Vanadium	mg/L	0.12	<0.00050	<0.00050	
Zinc	mg/L	0.004	<0.0010	<0.0010	
Zirconium	mg/L		<0.00020	<0.00020	
Radionuclides					
Radium-226	Bq/I		<0.005	< 0.005	

¹Azimuth (Azimuth Consulting Group Inc.), 2022. Core Receiving Environment Monitoring Program (CREMP) 2022 Plan Update. Prepared for: Agnico Eagle Mines Ltd. Prepared by Azimuth Consulting Group Inc. April, 2022.

APPENDIX C

2021 – 2023 Electrofishing Fish Data (Location, Species, Length, Weight) & 2023 Gillnetting Fish Data (Location, Species, Length, Weight, Gonad/Egg Weight, Liver Weight, Stomach Contents)

Table C-1: Length and weight data for slimy sculpin (SLSC) and ninespine stickleback (NSSB) retained for measurement after capture through
electrofishing in FHOMP study lakes in 2021 (total counts may be higher).

Date	Lake	Fish ID	Species	Total Length (mm)	Weight (g)	Date	Lake	Fish ID	Species	Total Length (mm)	Weight (g)
10-Aug-21	A20	17373	NSSB	67	2.6	15-Aug-21	Lake 8	17446	SLSC	59	1.4
10-Aug-21	A20	17374	NSSB	61	1.4	15-Aug-21	Lake 8	17447	SLSC	69	3.0
10-Aug-21	A20	17375	NSSB	53	0.9	15-Aug-21	Lake 8	17448	SLSC	52	1.0
10-Aug-21	A20	17376	NSSB	59	1.1	15-Aug-21	Lake 8	17449	SLSC	64	1.9
10-Aug-21	A20	17377	NSSB	46	0.4	15-Aug-21	Lake 8	17450	SLSC	82	4.6
10-Aug-21	A20	17378	NSSB	65	2.0	15-Aug-21	Lake 8	17451	SLSC	62	1.9
10-Aug-21	A20	17379	NSSB	55	1.2	15-Aug-21	Lake 8	17452	SLSC	59	1.4
10-Aug-21	A20	17380	NSSB	56	1.0	15-Aug-21	Lake 8	17453	SLSC	72	4.1
10-Aug-21	A20 A20	17381 17382	NSSB NSSB	52 53	1.1 1.0	15-Aug-21 15-Aug-21	Lake 8 Lake 8	17454 17455	SLSC SLSC	62 57	1.9 1.5
10-Aug-21 10-Aug-21	A20	17382	NSSB	45	0.5	17-Aug-21	Mammoth	17435	NSSB	45	0.5
10-Aug-21	A20	17385	NSSB	63	1.2	17-Aug-21	Mammoth	17531	NSSB	64	1.4
10-Aug-21	A20	17386	NSSB	55	1.0	17-Aug-21	Mammoth	17532	NSSB	60	1.4
10-Aug-21	A20	17387	NSSB	55	1.0	17-Aug-21	Mammoth	17533	NSSB	55	0.8
10-Aug-21	A20	17388	NSSB	65	1.4	17-Aug-21	Mammoth	17534	NSSB	54	0.9
10-Aug-21	A20	17389	NSSB	61	1.2	17-Aug-21	Mammoth	17535	NSSB	52	0.8
10-Aug-21	A20	17390	NSSB	61	1.3	17-Aug-21	Mammoth	17536	NSSB	65	1.6
10-Aug-21	A20	17391	NSSB	52	0.9	17-Aug-21	Mammoth	17537	NSSB	53	0.9
10-Aug-21	A20	17392	NSSB	51	0.9	17-Aug-21	Mammoth	17538	NSSB	52	0.8
10-Aug-21	A20	17368	SLSC	62	2.0	17-Aug-21	Mammoth	17539	NSSB	56	1.0
10-Aug-21	A20	17369	SLSC	45	0.7	17-Aug-21	Mammoth	17540	NSSB	52	0.8
10-Aug-21	A20	17370	SLSC	45	0.6	17-Aug-21	Mammoth	17541	NSSB	45	0.6
10-Aug-21	A20	17371	SLSC	34	0.3	17-Aug-21	Mammoth	17542	NSSB	62	1.3
10-Aug-21	A20	17372	SLSC	33	0.2	17-Aug-21	Mammoth	17543	NSSB	58	1.2
10-Aug-21	A20	17393	SLSC	49	0.9	17-Aug-21	Mammoth	17544	NSSB	54	0.9
13-Aug-21	A44	17414	LKTR	52	0.9	17-Aug-21	Mammoth	17545	NSSB	48	0.6
18-Aug-21	A44	17626	NSSB	69	2.0	17-Aug-21	Mammoth	17546	NSSB	54	1.0
18-Aug-21	A44	17627	NSSB	63	1.3	17-Aug-21	Mammoth	17547	NSSB	57	1.1
18-Aug-21	A44	17628	NSSB	58	1.1	17-Aug-21	Mammoth	17548	NSSB	53	0.9
18-Aug-21	A44	17629	NSSB	51	0.7	17-Aug-21	Mammoth	17549	NSSB	58	1.1
13-Aug-21	A44	17409	SLSC	37	0.3	17-Aug-21	Mammoth	17550	NSSB	53	0.9
13-Aug-21	A44	17410	SLSC	63	1.8	17-Aug-21	Mammoth	17551	NSSB	63	1.5
13-Aug-21	A44	17411	SLSC	65	1.9	17-Aug-21	Mammoth	17552	NSSB	52	0.7
13-Aug-21	A44	17412	SLSC	60	1.6	17-Aug-21	Mammoth	17553	NSSB	57	1.0
13-Aug-21	A44	17413	SLSC	33	0.2	17-Aug-21	Mammoth	17554	NSSB	75	2.2
18-Aug-21	A44	17623	SLSC	49	0.9	17-Aug-21	Mammoth	17555	NSSB	61	1.5
18-Aug-21	A44	17624	SLSC	50	0.9	17-Aug-21	Mammoth	17556	NSSB	55	1.0
18-Aug-21	A44 A63	17625 17485	SLSC NSSB	58	1.5 0.8	17-Aug-21 17-Aug-21	Mammoth	17557 17558	NSSB NSSB	51 70	0.8
16-Aug-21 16-Aug-21	A63	17485	NSSB	53 57	1.2	17-Aug-21	Mammoth Mammoth	17559	NSSB	46	0.7
16-Aug-21 16-Aug-21	A63	17480	NSSB	58	1.2	17-Aug-21 17-Aug-21	Mammoth	17560	NSSB	40 54	0.7
16-Aug-21	A63	17488	NSSB	60	1.1	17-Aug-21	Mammoth	17561	NSSB	54	1.0
16-Aug-21	A63	17489	NSSB	54	0.9	17-Aug-21	Mammoth	17562	SLSC	53	1.0
16-Aug-21	A63	17490	NSSB	57	1.1	17-Aug-21	Mammoth	17563	SLSC	49	0.8
16-Aug-21	A63	17491	NSSB	50	0.8	17-Aug-21	Mammoth	17564	SLSC	65	1.8
16-Aug-21	A63	17492	NSSB	57	1.1	17-Aug-21	Mammoth	17565	SLSC	50	0.8
16-Aug-21	A63	17493	NSSB	71	1.9	17-Aug-21	Mammoth	17566	SLSC	34	0.3
16-Aug-21	A63	17494	NSSB	73	2.0	17-Aug-21	Mammoth	17567	SLSC	53	1.1
16-Aug-21	A63	17495	NSSB	58	1.1	17-Aug-21	Mammoth	17568	SLSC	42	0.5
16-Aug-21	A63	17496	NSSB	73	1.9	17-Aug-21	Mammoth	17569	SLSC	65	2.0
16-Aug-21	A63	17497	NSSB	51	0.8	17-Aug-21	Mammoth	17570	SLSC	59	1.5
16-Aug-21	A63	17498	NSSB	55	0.9	17-Aug-21	Mammoth	17571	SLSC	61	1.6
16-Aug-21	A63	17499	NSSB	58	1.3	17-Aug-21	Mammoth	17572	SLSC	57	1.4
16-Aug-21	A63	17500	NSSB	51	0.8	17-Aug-21	Mammoth	17573	SLSC	65	2.2
16-Aug-21	A63	17456	SLSC	81	4.0	17-Aug-21	Mammoth	17574	SLSC	64	2.0
16-Aug-21	A63	17457	SLSC	81	4.2	17-Aug-21	Mammoth	17575	SLSC	38	0.4
16-Aug-21	A63	17458	SLSC	39	0.4	17-Aug-21	Mammoth	17576	SLSC	50	0.9
16-Aug-21	A63	17459	SLSC	40	0.5	17-Aug-21	Mammoth	17577	SLSC	62	2.1
16-Aug-21	A63	17460	SLSC	47	0.8	17-Aug-21	Mammoth	17578	SLSC	36	0.4
16-Aug-21	A63	17461	SLSC	50	1.0	17-Aug-21	Mammoth	17579	SLSC	39	0.5
16-Aug-21	A63	17462	SLSC	41	0.6	17-Aug-21	Mammoth	17580	SLSC	74	2.9
16-Aug-21	A63	17463	SLSC	44	0.6	17-Aug-21	Mammoth	17581	SLSC	40	0.5
10 1 1	A63	17464	SLSC	47	0.7	17-Aug-21	Mammoth	17582	SLSC	52	1.1
16-Aug-21		17465	SLSC	41	0.6	17-Aug-21	Mammoth Mammoth	17583	SLSC	39	0.4
16-Aug-21	A63		01.00	75	0 - 1						
16-Aug-21 16-Aug-21	A63	17466	SLSC	75	3.5	17-Aug-21		17584	SLSC	63 60	2.1
16-Aug-21 16-Aug-21 16-Aug-21	A63 A63	17466 17467	SLSC	49	0.8	17-Aug-21	Mammoth	17585	SLSC	60	1.6
16-Aug-21 16-Aug-21	A63	17466									

Table C-1: Length and weight data for slimy sculpin (SLSC) and ninespine stickleback (NSSB) retained for measurement after capture through
electrofishing in FHOMP study lakes in 2021 (total counts may be higher).

Date	Lake	Fish ID	Species	Total Length (mm)	Weight (g)	Date	Lake	Fish ID	Species	Total Length (mm)	Weight (g
16-Aug-21	A63	17471	SLSC	43	0.7	17-Aug-21	Mammoth	17589	SLSC	40	0.5
16-Aug-21	A63	17472	SLSC	53	1.1	17-Aug-21	Mammoth	17590	SLSC	36	0.4
16-Aug-21	A63	17473	SLSC	48	0.8	17-Aug-21	Mammoth	17591	SLSC	40	0.4
16-Aug-21	A63	17474	SLSC	45	0.7	17-Aug-21	Mammoth	17592	SLSC	37	0.4
16-Aug-21	A63	17475	SLSC	41	0.5	14-Aug-21	WTS	17435	LKTR	47	0.7
16-Aug-21	A63	17476	SLSC	45	0.7	16-Aug-21	WTS	17528	LKTR	54	0.9
16-Aug-21	A63	17477	SLSC	43	0.5	16-Aug-21	WTS	17529	LKTR	50	1.0
16-Aug-21	A63	17478	SLSC	44	0.7	14-Aug-21	WTS	17430	NSSB	55	0.9
16-Aug-21	A63	17479	SLSC	44	0.7	14-Aug-21	WTS	17431	NSSB	55	1.2
16-Aug-21	A63	17480	SLSC	46	0.7	14-Aug-21	WTS	17432	NSSB	58	1.0
16-Aug-21	A63	17481	SLSC	45	0.6	14-Aug-21	WTS	17433	NSSB	57	0.8
16-Aug-21	A63	17482	SLSC	52	1.0	14-Aug-21	WTS	17434	NSSB	55	1.0
16-Aug-21	A63	17483	SLSC	47	0.8	16-Aug-21	WTS	17518	NSSB	53	1.0
16-Aug-21	A63	17484	SLSC	48	0.7	16-Aug-21	WTS	17519	NSSB	57	1.3
12-Aug-21	A65	17406	NSSB	59	1.2	16-Aug-21	WTS	17520	NSSB	53	0.8
12-Aug-21	A65	17407	NSSB	60	1.2	16-Aug-21	WTS	17521	NSSB	62	1.4
12-Aug-21	A65	17394	SLSC	71	3.3	16-Aug-21	WTS	17522	NSSB	44	0.7
12-Aug-21	A65	17395	SLSC	45	0.6	16-Aug-21	WTS	17523	NSSB	60	1.3
12-Aug-21	A65	17396	SLSC	63	1.8	16-Aug-21	WTS	17524	NSSB	52	1.0
12-Aug-21	A65	17397	SLSC	77	3.8	16-Aug-21	WTS	17525	NSSB	56	0.9
12-Aug-21	A65	17398	SLSC	74	3.6	16-Aug-21	WTS	17526	NSSB	58	1.2
12-Aug-21	A65	17399	SLSC	82	4.2	16-Aug-21	WTS	17527	NSSB	75	2.5
12-Aug-21	A65	17400	SLSC	45	0.7	14-Aug-21	WTS	17415	SLSC	81	5.0
12-Aug-21	A65	17400	SLSC	40	0.6	14-Aug-21	WTS	17416	SLSC	90	6.8
12-Aug-21	A65	17401	SLSC	61	1.6	14-Aug-21	WTS	17417	SLSC	65	2.3
12-Aug-21	A65	17402	SLSC	47	0.7	14-Aug-21	WTS	17418	SLSC	81	3.3
, ,	A65	17403	SLSC	53	1.1	14-Aug-21	WTS	17419	SLSC	60	1.6
12-Aug-21				42	0.6				SLSC	88	
12-Aug-21	A65 B03	17405 17443	SLSC	42 56		14-Aug-21	WTS	17420	SLSC	63	4.6
14-Aug-21			NSSB		1.0	14-Aug-21	WTS	17421			1.7
14-Aug-21	B03	17444	NSSB	53	0.8	14-Aug-21	WTS	17422	SLSC	66	2.3
18-Aug-21	B03	17616	NSSB	56	1.2	14-Aug-21	WTS	17423	SLSC	59	1.8
18-Aug-21	B03	17617	NSSB	53	0.9	14-Aug-21	WTS	17424	SLSC	60	1.7
18-Aug-21	B03	17618	NSSB	58	1.3	14-Aug-21	WTS	17425	SLSC	52	1.0
18-Aug-21	B03	17619	NSSB	53	0.9	14-Aug-21	WTS	17426	SLSC	39	0.4
18-Aug-21	B03	17620	NSSB	57	1.2	14-Aug-21	WTS	17427	SLSC	41	0.6
18-Aug-21	B03	17621	NSSB	56	1.0	14-Aug-21	WTS	17428	SLSC	47	0.7
18-Aug-21	B03	17622	NSSB	57	1.2	14-Aug-21	WTS	17429	SLSC	110	14.2
14-Aug-21	B03	17436	SLSC	71	2.7	16-Aug-21	WTS	17501	SLSC	68	3.3
14-Aug-21	B03	17437	SLSC	51	0.9	16-Aug-21	WTS	17502	SLSC	73	3.2
14-Aug-21	B03	17438	SLSC	56	1.2	16-Aug-21	WTS	17503	SLSC	75	2.8
14-Aug-21	B03	17439	SLSC	51	0.8	16-Aug-21	WTS	17504	SLSC	80	3.9
14-Aug-21	B03	17440	SLSC	51	1.0	16-Aug-21	WTS	17505	SLSC	63	2.9
14-Aug-21	B03	17441	SLSC	54	1.1	16-Aug-21	WTS	17506	SLSC	83	3.8
14-Aug-21	B03	17442	SLSC	34	0.2	16-Aug-21	WTS	17507	SLSC	68	2.7
18-Aug-21	B03	17593	SLSC	56	1.5	16-Aug-21	WTS	17508	SLSC	39	0.5
18-Aug-21	B03	17594	SLSC	60	1.7	16-Aug-21	WTS	17509	SLSC	64	2.0
18-Aug-21	B03	17595	SLSC	39	0.5	16-Aug-21	WTS	17510	SLSC	70	3.0
18-Aug-21	B03	17596	SLSC	84	4.8	16-Aug-21	WTS	17511	SLSC	69	3.3
18-Aug-21	B03	17597	SLSC	44	0.6	16-Aug-21	WTS	17512	SLSC	63	2.1
18-Aug-21	B03	17598	SLSC	41	0.5	16-Aug-21	WTS	17513	SLSC	47	0.9
18-Aug-21	B03	17599	SLSC	39	0.4	16-Aug-21	WTS	17514	SLSC	45	0.7
18-Aug-21	B03	17600	SLSC	42	0.5	16-Aug-21	WTS	17515	SLSC	64	1.9
18-Aug-21	B03	17601	SLSC	63	2.3	16-Aug-21	WTS	17516	SLSC	42	0.6
18-Aug-21	B03	17602	SLSC	40	0.4	16-Aug-21	WTS	17517	SLSC	50	1.0
18-Aug-21	B03	17603	SLSC	69	2.9	<u> </u>					
18-Aug-21	B03	17604	SLSC	72	2.6						
18-Aug-21	B03	17605	SLSC	61	1.7						
18-Aug-21	B03	17606	SLSC	44	0.6						
18-Aug-21	B03	17607	SLSC	44	0.6						
-											
18-Aug-21	B03	17608	SLSC	49	0.9						
18-Aug-21	B03	17609	SLSC	45	0.6						
18-Aug-21	B03	17610	SLSC	43	0.5						
18-Aug-21	B03	17611	SLSC	51	1.1						
10.4	B03	17612	SLSC	58	1.6						
18-Aug-21			a: -								
18-Aug-21 18-Aug-21 18-Aug-21	B03 B03	17613 17614	SLSC SLSC	53 51	1.0 0.9						

Table C-2: Length and weight data for slimy sculpin (SLSC) and ninespine stickleback (NSSB) retained for measurement after capture through electrofishing in FHOMP study lakes in 2022 (total counts may be higher).

Note: In 2022, a number of fish were measured but were too light for the scale used, so weight is blank.

Date	Lake	Fish ID	Species	Total Length (mm)	Weight (g)	D	ate	Lake	Fish ID	Species	Total Length (mm)	Weight (g)
21-Aug-22	A20	36	NSSB	67	2.3	22-A	ug-22	B03	1	NSSB	33	
21-Aug-22	A20	37	NSSB	66	1.8		ug-22	B03	1	SLSC	51	0.5
21-Aug-22	A20	38	NSSB	65	1.7		ug-22	B03	2	SLSC	56	1
21-Aug-22	A20	39	NSSB	59	0.9		ug-22	B03	3	SLSC	67	1.9
21-Aug-22	A20 A20	40 41	NSSB NSSB	33 32			ug-22	B03 B03	4	SLSC SLSC	52 37	1.2
21-Aug-22 21-Aug-22	A20 A20	41	NSSB	32			ug-22 ug-22	B03	6	SLSC	63	1.4
21-Aug-22 21-Aug-22	A20	43	NSSB	41			ug-22	B03	7	SLSC	57	0.8
21-Aug-22	A20	44	NSSB	42			ug-22	B03	8	SLSC	46	0.7
21-Aug-22	A20	45	NSSB	32			ug-22	B03	9	SLSC	61	1.4
21-Aug-22	A20	46	NSSB	42			ug-22	B03	10	SLSC	61	1.8
21-Aug-22	A20	47	NSSB	30			ug-22	B03	11	SLSC	46	0.6
21-Aug-22	A20	1	SLSC	76	4	22-A	ug-22	B03	12	SLSC	50	0.7
21-Aug-22	A20	2	SLSC	48	0.9	22-A	ug-22	B03	13	SLSC	57	1.9
21-Aug-22	A20	3	SLSC	56	1.1	22-A	ug-22	B03	14	SLSC	72	3.4
21-Aug-22	A20	4	SLSC	52	1.1		ug-22	B03	15	SLSC	67	1.5
21-Aug-22	A20	5	SLSC	80	4.3		ug-22	B03	16	SLSC	50	0.7
21-Aug-22	A20	6	SLSC	55	1.2		ug-22	B03	17	SLSC	55	1.1
21-Aug-22	A20	7	SLSC	75	3.6		ug-22	B03	18	SLSC	54	1
21-Aug-22	A20	8	SLSC	50	1		ug-22	B03	19	SLSC	47	0.6
21-Aug-22 21-Aug-22	A20 A20	9 10	SLSC SLSC	42 45	0.5		ug-22 ug-22	B03 B03	20 21	SLSC SLSC	51 42	0.9
21-Aug-22 21-Aug-22	A20 A20	10	SLSC	45 38	0.0		ug-22	B03 B03	21	SLSC	42 52	0.6
21-Aug-22 21-Aug-22	A20 A20	12	SLSC	60	1.3		ug-22	B03	22	SLSC	45	0.7
21-Aug-22	A20	14	SLSC	46	0.7		ug-22	B03	24	SLSC	77	3
21-Aug-22	A20	15	SLSC	49	0.9		ug-22	B03	25	SLSC	55	1.1
21-Aug-22	A20	16	SLSC	49	0.9		ug-22	B03	26	SLSC	67	2.5
21-Aug-22	A20	17	SLSC	50	1	22-A	ug-22	B03	27	SLSC	63	1.8
21-Aug-22	A20	18	SLSC	42	0.6	22-A	ug-22	B03	28	SLSC	50	0.7
21-Aug-22	A20	19	SLSC	51	1.1	22-A	ug-22	B03	29	SLSC	63	2
21-Aug-22	A20	20	SLSC	50	1	22-A	ug-22	B03	30	SLSC	65	2.3
21-Aug-22	A20	21	SLSC	50	1.1	22-A	ug-22	B03	31	SLSC	74	3
21-Aug-22	A20	22	SLSC	48	0.6		ug-22	B03	32	SLSC	46	0.6
21-Aug-22	A20	23	SLSC	47	0.9		ug-22	B03	33	SLSC	56	1.3
21-Aug-22	A20	24	SLSC	49	1		ug-22	B03	34	SLSC	65	1.8
21-Aug-22	A20	25	SLSC	40	0.5		ug-22	B03	35	SLSC	66	2.1
21-Aug-22	A20 A20	26 27	SLSC SLSC	46 44	0.7		ug-22	B03	36 37	SLSC SLSC	50 54	1
21-Aug-22 21-Aug-22	A20 A20	27	SLSC	44	0.6		ug-22 ug-22	B03 B03	37	SLSC		0.6
21-Aug-22 21-Aug-22	A20	20	SLSC	57	1.6		ug-22	Lake 8	4	SLSC	47	0.0
21-Aug-22	A20	30	SLSC	50	0.9		ug-22	Lake 8	5	SLSC	53	1
21-Aug-22	A20	31	SLSC	36			ug-22	Lake 8	6	SLSC	43	0.6
21-Aug-22	A20	32	SLSC	35			ug-22	Lake 8	7	SLSC	67	2.4
21-Aug-22	A20	33	SLSC	37		20-A	ug-22	Lake 8	8	SLSC	51	0.9
21-Aug-22	A20	34	SLSC	35		20-A	ug-22	Lake 8	9	SLSC	52	0.8
21-Aug-22	A20	35	SLSC	36		20-A	ug-22	Lake 8	10	SLSC	61	1.6
19-Aug-22	A44	9	NSSB	33			ug-22	Lake 8	11	SLSC	43	0.8
19-Aug-22	A44	10	NSSB	41			ug-22	Lake 8	12	SLSC	47	0.8
19-Aug-22	A44	11	NSSB	42			ug-22	Lake 8	13	SLSC	65	2.1
19-Aug-22	A44	12	NSSB	32			ug-22	Lake 8	14	SLSC	59	1.7
19-Aug-22	A44	13	NSSB	35			ug-22	Lake 8	15	SLSC	51	0.9
19-Aug-22	A44	14	NSSB	37			ug-22	Lake 8	16	SLSC	35	0.8
19-Aug-22 19-Aug-22	A44 A44	15 16	NSSB NSSB	34 34			ug-22	Lake 8 Lake 8	17 18	SLSC SLSC	45 41	1 0.6
19-Aug-22 19-Aug-22	A44 A44	16	NSSB	34 34			ug-22 ug-22	Lake 8 Lake 8	18	SLSC	70	2.8
19-Aug-22 19-Aug-22	A44 A44	17	NSSB	43	0.6		ug-22	Lake 8	2	SLSC	53	1.3
19-Aug-22 19-Aug-22	A44 A44	10	NSSB	32	0.0		ug-22	Lake 8	3	SLSC	55	1.5
19-Aug-22 19-Aug-22	A44	20	NSSB	34			ug-22	Lake 8	4	SLSC	66	2.6
19-Aug-22	A44	24	NSSB	40			ug-22	Lake 8	5	SLSC	45	0.5
19-Aug-22	A44	27	NSSB	65	1.9		ug-22	Lake 8	6	SLSC	46	0.9
19-Aug-22	A44	28	NSSB	72	2.4		ug-22	Lake 8	7	SLSC	46	0.7
19-Aug-22	A44	30	NSSB	32			ug-22	Lake 8	8	SLSC	44	0.6
19-Aug-22	A44	31	NSSB	46	0.8	20-A	ug-22	Lake 8	9	SLSC	44	0.6
19-Aug-22	A44	32	NSSB	37		20-A	ug-22	Lake 8	10	SLSC	32	
19-Aug-22	A44	33	NSSB	37		20-A	ug-22	Lake 8	1	SLSC	60	1.8
19-Aug-22	A44	34	NSSB	32			ug-22	Lake 8	2	SLSC	61	1.9
19-Aug-22	A44	35	NSSB	39			ug-22	Lake 8	3	SLSC	65	2.1
19-Aug-22	A44	36	NSSB	39			ug-22	Lake 8	4	SLSC	65	2.7
19-Aug-22	A44	37	NSSB	44		20-A	ug-22	Lake 8	5	SLSC	42	0.6

Table C-2: Length and weight data for slimy sculpin (SLSC) and ninespine stickleback (NSSB) retained for measurement after capture through electrofishing in FHOMP study lakes in 2022 (total counts may be higher).

Note: In 2022, a number of fish were measured but were too light for the scale used, so weight is blank.

Date	Lake	Fish ID	Species	Total Length (mm)	Weight (g)	Date	Lake	Fish ID	Species	Total Length (mm)	Weight (g)
19-Aug-22	A44	38	NSSB	41		20-Aug-22	Lake 8	6	SLSC	67	2.7
19-Aug-22	A44	39	NSSB	31		20-Aug-22	Lake 8	7	SLSC	43	0.6
19-Aug-22	A44	40	NSSB	39		20-Aug-22	Lake 8	8	SLSC	30	
19-Aug-22	A44	41	NSSB	41		20-Aug-22	Lake 8	9	SLSC	40	0.6
19-Aug-22	A44	42	NSSB	32		18-Aug-22	Mammoth	6	NSSB	57	1.3
19-Aug-22	A44	43 44	NSSB NSSB	26 27		18-Aug-22	Mammoth	7	NSSB	61 74	2 3.1
19-Aug-22	A44 A44	44	NSSB			18-Aug-22	Mammoth Mammoth	8 9	NSSB NSSB	65	2.9
19-Aug-22 19-Aug-22	A44 A44	45	NSSB	31 32		18-Aug-22 18-Aug-22	Mammoth	10	NSSB	69	2.9
19-Aug-22	A44	40	NSSB	33		18-Aug-22	Mammoth	10	NSSB	56	2.0
19-Aug-22	A44	2	SLSC	52	0.6	18-Aug-22	Mammoth	14	NSSB	40	0.5
19-Aug-22	A44	3	SLSC	47	0.6	18-Aug-22	Mammoth	29	NSSB	42	0.7
19-Aug-22	A44	1	SLSC	75	3.7	18-Aug-22	Mammoth	45	NSSB	56	1.8
19-Aug-22	A44	2	SLSC	57	1.2	18-Aug-22	Mammoth	46	NSSB	60	2
19-Aug-22	A44	4	SLSC	56	1.1	18-Aug-22	Mammoth	49	NSSB	35	0.2
19-Aug-22	A44	5	SLSC	67	2.4	18-Aug-22	Mammoth	50	NSSB	32	0.2
19-Aug-22	A44	6	SLSC	60	1.3	18-Aug-22	Mammoth	51	NSSB	36	0.2
19-Aug-22	A44	7	SLSC	56	1.4	18-Aug-22	Mammoth	1	SLSC	57	1.4
19-Aug-22	A44	8	SLSC	57	1	18-Aug-22	Mammoth	2	SLSC	67	2.1
19-Aug-22	A44	21	SLSC	45	0.7	18-Aug-22	Mammoth	3	SLSC	60	2.4
19-Aug-22	A44	22	SLSC	57	1.1	18-Aug-22	Mammoth	4	SLSC	53	1.4
19-Aug-22	A44	23	SLSC	56	1.3	18-Aug-22	Mammoth	5	SLSC	41	0.8
19-Aug-22	A44	25	SLSC	51	0.9	18-Aug-22	Mammoth	15	SLSC	60	1.8
19-Aug-22	A44	26	SLSC	55	1.2	18-Aug-22	Mammoth	16	SLSC	63	1.9
23-Aug-22	A63	1	NSSB	31		18-Aug-22	Mammoth	17	SLSC	66	2.7
23-Aug-22	A63	2	NSSB	28		18-Aug-22	Mammoth	18	SLSC	62	2.1
23-Aug-22	A63	3	NSSB	27		18-Aug-22	Mammoth	19	SLSC	49	0.7
23-Aug-22	A63	4	NSSB	33		18-Aug-22	Mammoth	20	SLSC	63	2.7
23-Aug-22	A63	5	NSSB	35		18-Aug-22	Mammoth	21	SLSC	62	1.9
23-Aug-22	A63	6	NSSB	30		18-Aug-22	Mammoth	22	SLSC	44	0.5
23-Aug-22	A63	7	NSSB	62	1.8	18-Aug-22	Mammoth	23	SLSC	54	0.9
23-Aug-22	A63	8	NSSB	28		18-Aug-22	Mammoth	24	SLSC	40	0.5
23-Aug-22	A63	9	NSSB	42	0.6	18-Aug-22	Mammoth	25	SLSC	51	1.2
23-Aug-22	A63	10	NSSB	31	0.0	18-Aug-22	Mammoth	26	SLSC	46	0.6
23-Aug-22	A63	11	NSSB	38	0.6	18-Aug-22	Mammoth	27	SLSC	45	0.8
23-Aug-22 23-Aug-22	A63 A63	12 13	NSSB NSSB	27 40		18-Aug-22 18-Aug-22	Mammoth Mammoth	28 30	SLSC SLSC	37 36	0.6
23-Aug-22 23-Aug-22	A63	13	NSSB	27			Mammoth	30	SLSC	46	0.0
23-Aug-22 23-Aug-22	A63	14	NSSB	27		18-Aug-22 18-Aug-22	Mammoth	32	SLSC	39	0.7
23-Aug-22	A63	16	NSSB	76	2.1	18-Aug-22	Mammoth	33	SLSC	37	0.6
23-Aug-22	A63	18	NSSB	60	1.3	18-Aug-22	Mammoth	34	SLSC	42	0.6
23-Aug-22	A63	19	NSSB	42	0.6	18-Aug-22	Mammoth	35	SLSC	40	0.5
23-Aug-22	A63	20	NSSB	27		18-Aug-22	Mammoth	36	SLSC	38	0.2
23-Aug-22	A63	21	NSSB	23		18-Aug-22	Mammoth	37	SLSC	38	0.6
23-Aug-22	A63	25	NSSB	29		18-Aug-22	Mammoth	38	SLSC	40	0.7
23-Aug-22	A63	26	NSSB	41	0.7	18-Aug-22	Mammoth	39	SLSC	38	0.2
23-Aug-22	A63	27	NSSB	30		18-Aug-22	Mammoth	40	SLSC	40	0.6
23-Aug-22	A63	28	NSSB	31		18-Aug-22	Mammoth	41	SLSC	41	0.6
23-Aug-22	A63	29	NSSB	31		18-Aug-22	Mammoth	42	SLSC	36	0.2
23-Aug-22	A63	30	NSSB	26		18-Aug-22	Mammoth	43	SLSC	37	0.2
23-Aug-22	A63	31	NSSB	20		18-Aug-22	Mammoth	44	SLSC	35	0.2
23-Aug-22	A63	34	NSSB	30		18-Aug-22	Mammoth	48	SLSC	41	0.2
23-Aug-22	A63	35	NSSB	34		21-Aug-22	WTS	20	NSSB	50	0.7
23-Aug-22	A63	36	NSSB	41		21-Aug-22	WTS	22	NSSB	30	
23-Aug-22	A63	37	NSSB	39		21-Aug-22	WTS	23	NSSB	42	
23-Aug-22	A63	38	NSSB	27		21-Aug-22	WTS	24	NSSB	56	1.1
23-Aug-22	A63	39	NSSB	37		21-Aug-22	WTS	25	NSSB	60	1.5
23-Aug-22	A63	40	NSSB	37		21-Aug-22	WTS	26	NSSB	37	
23-Aug-22	A63	44	NSSB	22		21-Aug-22	WTS	27	NSSB	37	
23-Aug-22	A63	45	NSSB	27	ļļ	21-Aug-22	WTS	28	NSSB	35	
23-Aug-22	A63	54	NSSB	37		21-Aug-22	WTS	29	NSSB	33	
-	A63	56	NSSB	27	ļļ	21-Aug-22	WTS	30	NSSB	32	
23-Aug-22		67	NSSB	28	ļļ	21-Aug-22	WTS	31	NSSB	34	
23-Aug-22 23-Aug-22	A63	57	110			01 0.00	WTS	32	NSSB	30	1
23-Aug-22 23-Aug-22 23-Aug-22	A63	58	NSSB	29		21-Aug-22					
23-Aug-22 23-Aug-22 23-Aug-22 23-Aug-22	A63 A63	58 59	NSSB	32		21-Aug-22	WTS	33	NSSB	36	
23-Aug-22 23-Aug-22 23-Aug-22 23-Aug-22 23-Aug-22	A63 A63 A63	58 59 60	NSSB NSSB	32 30		21-Aug-22 21-Aug-22	WTS WTS	33 34	NSSB NSSB	36 30	
23-Aug-22 23-Aug-22 23-Aug-22 23-Aug-22	A63 A63	58 59	NSSB	32	0.5	21-Aug-22	WTS	33	NSSB	36	0.6

Table C-2: Length and weight data for slimy sculpin (SLSC) and ninespine stickleback (NSSB) retained for measurement after capture through electrofishing in FHOMP study lakes in 2022 (total counts may be higher).

Note: In 2022, a number of fish were measured but were too light for the scale used, so weight is blank.

Date	Lake	Fish ID	Species	Total Length (mm)	Weight (g)		Date	Lake	Fish ID	Species	Total Length (mm)	Weight (g
23-Aug-22	A63	65	NSSB	28			21-Aug-22	WTS	38	NSSB	31	
23-Aug-22	A63	66	NSSB	47	0.5		21-Aug-22	WTS	39	NSSB	39	
23-Aug-22	A63	67	NSSB	28			21-Aug-22	WTS	40	NSSB	42	0.5
23-Aug-22	A63	70	NSSB	30			21-Aug-22	WTS	41	NSSB	40	
23-Aug-22	A63	71	NSSB	27			21-Aug-22	WTS	42	NSSB	39	
23-Aug-22	A63	72	NSSB	40			21-Aug-22	WTS	43	NSSB	40	
23-Aug-22	A63	73	NSSB	37			21-Aug-22	WTS	44	NSSB	32	
23-Aug-22	A63	74	NSSB	32			21-Aug-22	WTS	45	NSSB	33	
23-Aug-22	A63	75	NSSB	43			21-Aug-22	WTS	46	NSSB	37	
23-Aug-22	A63	76	NSSB	26			21-Aug-22	WTS	47	NSSB	32	
23-Aug-22	A63	77	NSSB	32			21-Aug-22	WTS	48	NSSB	0	
23-Aug-22	A63	78	NSSB	35			21-Aug-22	WTS	55	NSSB	31	
23-Aug-22	A63	79	NSSB	32			21-Aug-22	WTS	1	SLSC	52	1.1
23-Aug-22	A63	80	NSSB	34			21-Aug-22	WTS	2	SLSC	65	2
23-Aug-22	A63	81	NSSB	31			21-Aug-22	WTS	3	SLSC	99	8.2
23-Aug-22	A63	82	NSSB	34			21-Aug-22	WTS	4	SLSC	60	1.7
23-Aug-22	A63	83	NSSB	33			21-Aug-22	WTS	4	SLSC	43	
23-Aug-22	A63	84	NSSB	35			21-Aug-22	WTS	6	SLSC	60	1.5
23-Aug-22	A63	85	NSSB	32			21-Aug-22	WTS	7	SLSC	53	1.1
23-Aug-22	A63	86	NSSB	30			21-Aug-22	WTS	8	SLSC	66	2.4
23-Aug-22	A63	87	NSSB	29			21-Aug-22	WTS	9	SLSC	40	0.6
23-Aug-22	A63	17	SLSC	46			21-Aug-22	WTS	10	SLSC	44	0.7
23-Aug-22	A63	22	SLSC	56	1.1		21-Aug-22	WTS	11	SLSC	65	2.4
23-Aug-22	A63	23	SLSC	46	0.9	-	21-Aug-22	WTS	12	SLSC	24	0.6
23-Aug-22	A63	20	SLSC	45	0.0	-	21-Aug-22	WTS	13	SLSC	68	2.7
23-Aug-22	A63	32	SLSC	40	0.7	-	21-Aug-22	WTS	14	SLSC	46	0.7
23-Aug-22 23-Aug-22	A63	33	SLSC	75	3.2		21-Aug-22 21-Aug-22	WTS	15	SLSC	46	0.7
23-Aug-22	A63	41	SLSC	48	1	-	21-Aug-22	WTS	16	SLSC	39	0.5
23-Aug-22	A63	42	SLSC	45	1	-	21-Aug-22	WTS	17	SLSC	46	0.0
23-Aug-22	A63	43	SLSC	40	0.7	-	21-Aug-22	WTS	18	SLSC	37	0.5
23-Aug-22	A63	46	SLSC	46	0.7	-	21-Aug-22	WTS	19	SLSC	40	0.6
23-Aug-22 23-Aug-22	A63	40	SLSC	40	0.5		21-Aug-22 21-Aug-22	WTS	21	SLSC	40	0.5
23-Aug-22	A63	48	SLSC	50	1.1	-	21-Aug-22	WTS	50	SLSC	76	3.2
23-Aug-22 23-Aug-22	A63	40	SLSC	59	1.6	-	21-Aug-22 21-Aug-22	WTS	51	SLSC	65	2.4
23-Aug-22	A63	50	SLSC	56	0.9	-	21-Aug-22 21-Aug-22	WTS	53	SLSC	44	0.5
23-Aug-22	A63	50	SLSC	46	0.3	-	21-Aug-22 21-Aug-22	WTS	53	SLSC	30	0.0
23-Aug-22 23-Aug-22	A63	52	SLSC	40	0.7	-	21-Aug-22 21-Aug-22	WTS	54	SLSC	35	
23-Aug-22 23-Aug-22	A63	53	SLSC	44 46		L	21-Aug-22	1010	54	3130		
23-Aug-22 23-Aug-22	A63	55	SLSC	62	1.6							
23-Aug-22 23-Aug-22	A63	62	SLSC	46	0.7							
-	A63	68	SLSC	46	0.7							
23-Aug-22	A63	69	SLSC	45	0.6							
23-Aug-22			SLSC									
23-Aug-22	A63	88 89		77	4.7 3.4							
23-Aug-22	A63		SLSC									
23-Aug-22	A63	90	SLSC	45	0.7							
23-Aug-22	A63	91	SLSC	58	2							
23-Aug-22	A63	92	SLSC	47	0.7							
23-Aug-22	A63	93	SLSC	45	0.6							
23-Aug-22	A63	94	SLSC	43	0.6							
23-Aug-22	A63	95	SLSC	42	0.6							
23-Aug-22	A63	96	SLSC	58	1.9							
23-Aug-22	A63	97	SLSC	44	0.6							
23-Aug-22	A63	98	SLSC	42	0.7							
23-Aug-22	A63	99	SLSC	44	0.7							
23-Aug-22	A63	100	SLSC	49	1							

Table C-3: Length and weight data for slimy sculpin (SLSC) and ninespine stickleback (NSSB) retained for measurement after capture through electrofishing in FHOMP study lakes in 2023 (total counts may be higher).

Date	Lake	Fish ID	Species	Total Length (mm)	Weight (g)		Date	Lake	Fish ID	Species	Total Length (mm)	Weight (g)
23-Aug-23	A20	NS-2	NSSB	55	1.1206		21-Aug-23	Lake 8	SC-205	SLSC	43	0.6176
23-Aug-23	A20	NS-3	NSSB	65	1.6952		21-Aug-23	Lake 8	SC-206	SLSC	48	0.8472
23-Aug-23	A20	NS-4	NSSB	52	0.8706		21-Aug-23	Lake 8	SC-207	SLSC	43	0.5831
23-Aug-23	A20	NS-5	NSSB	55	1.0791	-	21-Aug-23 21-Aug-23	Lake 8	SC-208	SLSC	42	0.6078
23-Aug-23 23-Aug-23	A20 A20	NS-6 NS-7	NSSB NSSB	59 52	1.602 1.1507	-	21-Aug-23 21-Aug-23	Lake 8 Lake 8	SC-209 SC-210	SLSC SLSC	49 39	0.8622
23-Aug-23	A20	NS-8	NSSB	59	1.58		21-Aug-23	Lake 8	SC-211	SLSC	42	0.5167
23-Aug-23	A20	NS-9	NSSB	49	0.7053		21-Aug-23	Lake 8	SC-212	SLSC	40	0.4885
23-Aug-23	A20	NS-10	NSSB	42	0.4036		21-Aug-23	Lake 8	SC-213	SLSC	41	0.5092
23-Aug-23	A20	NS-11	NSSB	49	0.6849	-	21-Aug-23	Lake 8	SC-214	SLSC	50	1.012
23-Aug-23 23-Aug-23	A20 A20	NS-12 NS-13	NSSB NSSB	39 49	0.2908	-	21-Aug-23 21-Aug-23	Lake 8 Lake 8	SC-215 SC-216	SLSC SLSC	62 52	2.1593 1.2629
23-Aug-23 23-Aug-23	A20	NS-14	NSSB	60	1.5391		21-Aug-23	Lake 8	SC-210	SLSC	39	0.43332
23-Aug-23	A20	NS-15	NSSB	58	1.4692		21-Aug-23	Lake 8	SC-218	SLSC	41	0.4672
23-Aug-23	A20	NS-16	NSSB	58	1.1613		21-Aug-23	Lake 8	SC-219	SLSC	36	0.2872
23-Aug-23	A20	NS-17	NSSB	42	0.5209		21-Aug-23	Lake 8	SC-220	SLSC	42	0.5532
23-Aug-23	A20	SC-138	SLSC	78	3.6383		21-Aug-23	Lake 8	SC-221	SLSC	50	0.8834
23-Aug-23	A20 A20	SC-139 SC-140	SLSC SLSC	76 66	4.1456 2.6544	-	21-Aug-23	Lake 8 Lake 8	SC-222 SC-223	SLSC SLSC	58 55	1.7798 1.2924
23-Aug-23 23-Aug-23	A20	SC-140 SC-141	SLSC	51	1.213		21-Aug-23 21-Aug-23	Lake 8	SC-223	SLSC	63	1.8474
23-Aug-23	A20	SC-142	SLSC	49	1.1025		21-Aug-23	Lake 8	SC-225	SLSC	56	1.3683
23-Aug-23	A20	SC-143	SLSC	50	1.2417		21-Aug-23	Lake 8	SC-226	SLSC	60	1.9464
23-Aug-23	A20	SC-144	SLSC	49	1.0129		21-Aug-23	Lake 8	SC-227	SLSC	45	0.6638
23-Aug-23	A20	SC-145	SLSC	47	0.8074		21-Aug-23	Lake 8	SC-228	SLSC	41	0.4816
23-Aug-23	A20	SC-146 SC-147	SLSC	44	0.7607	-	21-Aug-23	Lake 8 Lake 8	SC-229	SLSC	51	0.8335
23-Aug-23 23-Aug-23	A20 A20	SC-147 SC-148	SLSC SLSC	42	0.6253		21-Aug-23 21-Aug-23	Lake 8	SC-230 SC-231	SLSC SLSC	67 42	2.1017 0.5502
23-Aug-23	A20	SC-149	SLSC	40	0.6077		21-Aug-23	Lake 8	SC-232	SLSC	44	0.6387
23-Aug-23	A20	SC-150	SLSC	40	0.589		21-Aug-23	Lake 8	SC-233	SLSC	50	0.9417
23-Aug-23	A20	SC-151	SLSC	41	0.5737		21-Aug-23	Lake 8	SC-234	SLSC	45	0.7039
23-Aug-23	A20	SC-152	SLSC	42	0.6802		21-Aug-23	Lake 8	SC-235	SLSC	53	1.3564
23-Aug-23	A20	SC-153	SLSC	38	0.4884		21-Aug-23	Lake 8	SC-236	SLSC	41	0.5254
23-Aug-23 23-Aug-23	A20 A20	SC-154 SC-155	SLSC SLSC	40 45	0.6227	-	21-Aug-23 21-Aug-23	Lake 8 Lake 8	SC-237 SC-238	SLSC SLSC	61 45	1.974 0.5948
23-Aug-23	A20	SC-155	SLSC	39	0.6051		21-Aug-23	Lake 8	SC-239	SLSC	56	1.4733
23-Aug-23	A20	SC-157	SLSC	45	0.7838		21-Aug-23	Lake 8	SC-240	SLSC	44	0.648
23-Aug-23	A20	SC-158	SLSC	67	2.3176		21-Aug-23	Lake 8	SC-241	SLSC	42	0.5147
23-Aug-23	A20	SC-159	SLSC	46	1.0174		21-Aug-23	Lake 8	SC-242	SLSC	41	0.4755
23-Aug-23	A20	SC-160	SLSC	64	2.3236	-	21-Aug-23	Lake 8	SC-243	SLSC	40	0.4704
23-Aug-23 23-Aug-23	A20 A20	SC-161 SC-162	SLSC SLSC	50 47	1.2473 0.8565		21-Aug-23 21-Aug-23	Lake 8 Lake 8	SC-244 SC-245	SLSC SLSC	42 56	0.5807
23-Aug-23	A20	SC-163	SLSC	47	0.9078		21-Aug-23	Lake 8	SC-246	SLSC	54	1.1278
23-Aug-23	A20	SC-164	SLSC	41	0.5666		21-Aug-23	Lake 8	SC-247	SLSC	35	0.3546
23-Aug-23	A20	SC-165	SLSC	51	0.9592		21-Aug-23	Lake 8	SC-248	SLSC	39	0.4638
23-Aug-23	A20	SC-166	SLSC	45	0.7362		21-Aug-23	Lake 8	SC-249	SLSC	40	0.5426
23-Aug-23 23-Aug-23	A20 A20	SC-167 SC-168	SLSC SLSC	55 54	1.4671 1.3281		21-Aug-23 21-Aug-23	Lake 8 Lake 8	SC-250 SC-251	SLSC SLSC	34 37	0.2839
23-Aug-23	A20	SC-169	SLSC	44	0.6381		21-Aug-23	Lake 8	SC-251	SLSC	37	0.4188
27-Aug-23	A44	NS-86	NSSB	68	1.7625		21-Aug-23	Lake 8	SC-253	SLSC	44	0.629
27-Aug-23	A44	NS-87	NSSB	60	1.4625		21-Aug-23	Lake 8	SC-254	SLSC	46	0.8358
27-Aug-23	A44	NS-88	NSSB	57	1.491		21-Aug-23	Lake 8	SC-255	SLSC	42	0.5991
27-Aug-23	A44	NS-89	NSSB	40	0.4316		20-Aug-23	Mammoth	SC-1	SLSC	55	1.27
27-Aug-23 27-Aug-23	A44 A44	NS-90 NS-91	NSSB NSSB	39 49	0.4352 0.6634		20-Aug-23 20-Aug-23	Mammoth Mammoth	SC-2 SC-3	SLSC SLSC	50 41	1.07 0.5
27-Aug-23 27-Aug-23	A44 A44	NS-91	NSSB	39	0.3772		20-Aug-23 20-Aug-23	Mammoth	SC-3	SLSC	41	0.51
27-Aug-23	A44	SC-256	SLSC	54	1.8978		20-Aug-23	Mammoth	SC-5	SLSC	44	0.58
27-Aug-23	A44	SC-257	SLSC	46	1.0413		20-Aug-23	Mammoth	SC-6	SLSC	44	0.7
27-Aug-23	A44	SC-258	SLSC	68	2.5404		20-Aug-23	Mammoth	SC-7	SLSC	46	0.69
27-Aug-23	A44	SC-259	SLSC	60	1.9315		20-Aug-23	Mammoth	SC-8	SLSC	47	0.76
27-Aug-23 27-Aug-23	A44 A44	SC-260 SC-261	SLSC SLSC	70 81	2.8996 5.0669	-	20-Aug-23 20-Aug-23	Mammoth Mammoth	SC-9 SC-10	SLSC SLSC	39 37	0.4 0.3621
27-Aug-23 27-Aug-23	A44 A44	SC-261	SLSC	61	2.0432		20-Aug-23 20-Aug-23	Mammoth	SC-10	SLSC	37	0.3021
27-Aug-23	A44	SC-263	SLSC	66	3.1169		20-Aug-23	Mammoth	SC-12	SLSC	47	0.8207
27-Aug-23	A44	SC-264	SLSC	81	5.3467		20-Aug-23	Mammoth	SC-13	SLSC	54	1.2879
27-Aug-23	A44	SC-265	SLSC	42	0.5804		20-Aug-23	Mammoth	SC-14	SLSC	56	1.3781
27-Aug-23	A44	SC-266	SLSC	60	2.1173		20-Aug-23	Mammoth	SC-15	SLSC	65	2.0485
27-Aug-23 27-Aug-23	A44 A44	SC-267 SC-268	SLSC SLSC	55 53	1.2778 1.474		20-Aug-23 20-Aug-23	Mammoth Mammoth	SC-16 SC-17	SLSC SLSC	58 52	1.4814 1.0641
27-Aug-23 27-Aug-23	A44 A44	SC-268 SC-269	SLSC	53	1.474		20-Aug-23 20-Aug-23	Mammoth	SC-17 SC-18	SLSC	52 49	0.9406
27-Aug-23	A44	SC-205	SLSC	61	1.9006		20-Aug-23	Mammoth	SC-19	SLSC	40	0.4908
27-Aug-23	A44	SC-271	SLSC	55	1.3565		20-Aug-23	Mammoth	SC-20	SLSC	37	0.3913
27-Aug-23	A44	SC-272	SLSC	72	3.5037	[20-Aug-23	Mammoth	SC-21	SLSC	53	1.3314

Table C-3: Length and weight data for slimy sculpin (SLSC) and ninespine stickleback (NSSB) retained for measurement after capture through electrofishing in FHOMP study lakes in 2023 (total counts may be higher).

Date	Lake	Fish ID	Species	Total Length (mm)	Weight (g)	Date	Lake	Fish ID	Species	Total Length (mm)	Weight (g)
27-Aug-23	A44	SC-273	SLSC	59	2.2165	20-Aug-23	Mammoth	SC-22	SLSC	50	0.964
27-Aug-23	A44	SC-274	SLSC	57	1.579	20-Aug-23	Mammoth	SC-23	SLSC	50	0.9218
27-Aug-23	A44	SC-275	SLSC	60	2.5773	20-Aug-23	Mammoth	SC-24	SLSC	48	0.8358
27-Aug-23	A44	SC-276	SLSC	60	1.9864	20-Aug-23	Mammoth	SC-25	SLSC	42	0.5961
27-Aug-23	A44	SC-277	SLSC	52	1.2572	20-Aug-23	Mammoth	SC-26	SLSC	41	0.5554
27-Aug-23	A44	SC-278	SLSC	54	1.2822	20-Aug-23	Mammoth	SC-27	SLSC	40	0.4921
27-Aug-23 27-Aug-23	A44 A44	SC-279 SC-280	SLSC SLSC	61 44	2.2033 0.7786	20-Aug-23 20-Aug-23	Mammoth Mammoth	SC-28 SC-29	SLSC SLSC	41 47	0.5535
27-Aug-23 27-Aug-23	A44 A44	SC-280 SC-281	SLSC	59	1.5399	20-Aug-23	Mammoth	SC-29	SLSC	41	0.7939
27-Aug-23	A44	SC-282	SLSC	55	1.4249	20-Aug-23	Mammoth	SC-31	SLSC	49	0.8912
27-Aug-23	A44	SC-283	SLSC	46	0.791	20-Aug-23	Mammoth	SC-32	SLSC	54	1.29
27-Aug-23	A44	SC-284	SLSC	41	0.6321	20-Aug-23	Mammoth	SC-33	SLSC	53	1.303
23-Aug-23	A63	NS-38	NSSB	49	0.6751	20-Aug-23	Mammoth	SC-34	SLSC	42	0.5983
27-Aug-23	A63	NS-39	NSSB	65	1.6069	20-Aug-23	Mammoth	SC-35	SLSC	46	0.7365
23-Aug-23	A63	NS-40	NSSB	38	0.3349	20-Aug-23	Mammoth	SC-36	SLSC	39	0.4006
23-Aug-23	A63	NS-41	NSSB	39	0.359	20-Aug-23	Mammoth	SC-37	SLSC	39	0.4533
27-Aug-23	A63	NS-42	NSSB	46 52	0.6037	20-Aug-23	Mammoth	SC-38	SLSC	39	0.4925
27-Aug-23 23-Aug-23	A63 A63	NS-18 NS-19	NSSB NSSB	48	0.8432	20-Aug-23 20-Aug-23	Mammoth Mammoth	SC-39 SC-40	SLSC SLSC	38	0.447
23-Aug-23 23-Aug-23	A63	NS-19	NSSB	40	0.4156	20-Aug-23	Mammoth	SC-40	SLSC	36	0.4332
23-Aug-23	A63	NS-21	NSSB	37	0.3617	20-Aug-23	Mammoth	SC-42	SLSC	41	0.5327
23-Aug-23	A63	NS-22	NSSB	40	0.4483	20-Aug-23	Mammoth	SC-43	SLSC	38	0.4259
23-Aug-23	A63	NS-23	NSSB	36	0.3075	20-Aug-23	Mammoth	SC-44	SLSC	58	1.2631
23-Aug-23	A63	NS-24	NSSB	32	0.2105	20-Aug-23	Mammoth	SC-45	SLSC	44	0.6793
23-Aug-23	A63	NS-25	NSSB	33	0.2195	20-Aug-23	Mammoth	SC-46	SLSC	51	1.0361
23-Aug-23	A63	NS-26	NSSB	43	0.486	20-Aug-23	Mammoth	SC-47	SLSC	47	0.8347
23-Aug-23	A63	NS-27	NSSB	30	0.1878	20-Aug-23	Mammoth	SC-48	SLSC	43	0.6601
23-Aug-23	A63	NS-28	NSSB	35	0.2671	20-Aug-23	Mammoth	SC-49	SLSC	37	0.3883
23-Aug-23	A63	NS-29	NSSB	36	0.3109	20-Aug-23	Mammoth	SC-50	SLSC	41	0.5653
23-Aug-23	A63	NS-30	NSSB	41	0.427	20-Aug-23	Mammoth	SC-51	SLSC	37	0.4126
23-Aug-23	A63	NS-31 NS-32	NSSB NSSB	39 45	0.3799	20-Aug-23	Mammoth	SC-52 SC-53	SLSC	39 21	0.5129
23-Aug-23 23-Aug-23	A63 A63	NS-32 NS-33	NSSB	45	0.6031 0.3646	20-Aug-23 20-Aug-23	Mammoth Mammoth	SC-53 SC-54	SLSC SLSC	38	0.0883
23-Aug-23 23-Aug-23	A63	NS-34	NSSB	40	0.5598	20-Aug-23	WTS	NS-1	NSSB	43	0.4202
23-Aug-23	A63	NS-35	NSSB	47	0.6532	25-Aug-23	WTS	NS-43	NSSB	42	0.4559
23-Aug-23	A63	NS-36	NSSB	45	0.5928	25-Aug-23	WTS	NS-44	NSSB	37	0.325
23-Aug-23	A63	NS-37	NSSB	48	0.6942	25-Aug-23	WTS	NS-45	NSSB	44	0.567
27-Aug-23	A63	SC-170	SLSC	58	1.5704	25-Aug-23	WTS	NS-46	NSSB	34	0.2739
27-Aug-23	A63	SC-171	SLSC	62	1.7738	25-Aug-23	WTS	NS-47	NSSB	45	0.6647
27-Aug-23	A63	SC-172	SLSC	66	2.7775	25-Aug-23	WTS	NS-48	NSSB	43	0.5696
27-Aug-23	A63	SC-173	SLSC	57	1.5686	25-Aug-23	WTS	NS-49	NSSB	49	0.716
27-Aug-23	A63	SC-174	SLSC	66	2.6538 3.9529	25-Aug-23	WTS WTS	NS-50 NS-51	NSSB	52 35	1.0272
27-Aug-23 27-Aug-23	A63 A63	SC-175 SC-176	SLSC SLSC	76 68	2.8981	25-Aug-23 25-Aug-23	WTS	NS-51	NSSB NSSB	47	0.2773
27-Aug-23 27-Aug-23	A63	SC-170 SC-177	SLSC	88	5.5509	25-Aug-23	WTS	NS-53	NSSB	47	0.6705
27-Aug-23	A63	SC-178	SLSC	84	4.1806	25-Aug-23	WTS	NS-54	NSSB	39	0.3894
27-Aug-23	A63	SC-179	SLSC	63	2.4291	25-Aug-23	WTS	NS-55	NSSB	36	0.2866
27-Aug-23	A63	SC-180	SLSC	67	2.1976	25-Aug-23	WTS	NS-56	NSSB	57	1.5451
27-Aug-23	A63	SC-181	SLSC	62	1.8567	26-Aug-23	WTS	NS-57	NSSB	40	0.4504
27-Aug-23	A63	SC-182	SLSC	21	0.1046	26-Aug-23	WTS	NS-58	NSSB	39	0.4173
27-Aug-23	A63	SC-183	SLSC	27	0.157	26-Aug-23	WTS	NS-59	NSSB	37	0.3535
27-Aug-23	A63	SC-184a	SLSC	27	0.1634	26-Aug-23	WTS	NS-60	NSSB	35	0.2748
27-Aug-23	A63	SC-184b	SLSC	91	6.9248	26-Aug-23	WTS	NS-61	NSSB	41	0.4228
27-Aug-23 27-Aug-23	A63 A63	SC-185 SC-186	SLSC SLSC	81 87	5.1156 6.3156	26-Aug-23 26-Aug-23	WTS WTS	NS-62 NS-63	NSSB NSSB	37 35	0.369
27-Aug-23 27-Aug-23	A63	SC-186 SC-187	SLSC	87 71	6.3156 3.3139	26-Aug-23 26-Aug-23	WTS	NS-63	NSSB	41	0.2495
27-Aug-23 27-Aug-23	A63	SC-187 SC-188	SLSC	66	2.5218	26-Aug-23	WTS	NS-65	NSSB	61	1.3628
27-Aug-23	A63	SC-189	SLSC	65	2.2046	26-Aug-23	WTS	NS-66	NSSB	54	1.0507
27-Aug-23	A63	SC-190	SLSC	65	2.4981	26-Aug-23	WTS	NS-67	NSSB	53	0.879
27-Aug-23	A63	SC-191	SLSC	51	1.1282	26-Aug-23	WTS	NS-68	NSSB	58	1.1288
27-Aug-23	A63	SC-192	SLSC	67	2.3425	26-Aug-23	WTS	NS-69	NSSB	49	0.8157
27-Aug-23	A63	SC-193	SLSC	56	1.444	26-Aug-23	WTS	NS-70	NSSB	41	0.4611
27-Aug-23	A63	SC-194	SLSC	50	0.9559	26-Aug-23	WTS	NS-71	NSSB	64	1.5905
27-Aug-23	A63	SC-195	SLSC	49	0.9563	26-Aug-23	WTS	NS-72	NSSB	35	0.2789
27-Aug-23	A63	SC-196	SLSC	27	0.256	26-Aug-23	WTS	NS-73	NSSB	41	0.4703
27-Aug-23	A63	SC-197	SLSC	25	0.1444	26-Aug-23	WTS	NS-74	NSSB	66	1.7856
27-Aug-23	A63	SC-198	SLSC	27	0.2236	26-Aug-23	WTS WTS	NS-75	NSSB	43	0.4918
30-Aug-23 30-Aug-23	B03 B03	NS-93 NS-94	NSSB NSSB	55 57	1.1047 1.0731	26-Aug-23 26-Aug-23	WTS WTS	NS-76 NS-77	NSSB NSSB	49 30	0.7411 0.2178
		SC-285	SLSC	51	0.9744	26-Aug-23	WTS	NS-77	NSSB	45	0.2178
30-Aua-23	B03	36-265	J JLJU								
30-Aug-23 30-Aug-23	B03 B03	SC-285 SC-286	SLSC	74	3.439	26-Aug-23	WTS	NS-79	NSSB	43	0.5189

Table C-3: Length and weight data for slimy sculpin (SLSC) and ninespine stickleback (NSSB) retained for measurement after capture through
electrofishing in FHOMP study lakes in 2023 (total counts may be higher).

Date	Lake	Fish ID	Species	Total Length (mm)	Weight (g)
30-Aug-23	B03	SC-288	SLSC	56	1.528
30-Aug-23	B03	SC-289	SLSC	61	1.9417
30-Aug-23	B03	SC-290	SLSC	45	0.7941
30-Aug-23	B03	SC-291	SLSC	44	0.7821
30-Aug-23	B03	SC-292	SLSC	62	2.2225
30-Aug-23	B03	SC-293	SLSC	54	1.2311
30-Aug-23	B03	SC-294	SLSC	57	1.7333
30-Aug-23	B03	SC-295	SLSC	67	2.7794
30-Aug-23	B03	SC-296	SLSC	39	0.4608
30-Aug-23	B03	SC-297	SLSC	40	0.4912
30-Aug-23	B03	SC-298	SLSC	41	0.7055
30-Aug-23	B03	SC-299	SLSC	45	0.8217
30-Aug-23	B03	SC-300	SLSC	46	0.875
30-Aug-23	B03	SC-301	SLSC	65	2.9392
30-Aug-23	B03	SC-302	SLSC	42	0.6557
30-Aug-23	B03	SC-303	SLSC	42	0.6885
30-Aug-23	B03	SC-304	SLSC	60	1.8652
30-Aug-23	B03	SC-305	SLSC	52	1.4039
30-Aug-23	B03	SC-306	SLSC	49	1.0199
30-Aug-23	B03	SC-307	SLSC	55	1.3031
30-Aug-23	B03	SC-308	SLSC	66	2.3577
30-Aug-23	B03	SC-309	SLSC	41	0.5342
30-Aug-23	B03	SC-310	SLSC	50	1.1516
30-Aug-23	B03	SC-311	SLSC	64	2.3754
30-Aug-23	B03	SC-312	SLSC	42	0.6276
30-Aug-23	B03	SC-313	SLSC	39	0.5506
30-Aug-23	B03	SC-314	SLSC	46	0.7818
30-Aug-23	B03	SC-315	SLSC	42	0.5014

Date	Lake	Fish ID	Species	Total Length (mm)	Weight (g)
26-Aug-23	WTS	NS-81	NSSB	47	0.7151
26-Aug-23	WTS	NS-82	NSSB	31	0.1882
26-Aug-23	WTS	NS-83	NSSB	29	0.1541
26-Aug-23	WTS	NS-84	NSSB	39	0.3668
23-Aug-23	WTS	NS-85	NSSB	29	0.1963
20-Aug-23	WTS	SC-55	SLSC	40	0.5763
20-Aug-23	WTS	SC-56	SLSC	46	0.8078
20-Aug-23	WTS	SC-57	SLSC	49	0.9535
20-Aug-23	WTS	SC-58	SLSC	51	1.131
20-Aug-23	WTS	SC-59	SLSC	48	0.9452
20-Aug-23	WTS	SC-60	SLSC	42	0.4896
20-Aug-23	WTS	SC-61	SLSC	46	0.9196
20-Aug-23	WTS	SC-62	SLSC	40	0.5798
20-Aug-23	WTS	SC-63	SLSC	47	0.8603
20-Aug-23	WTS	SC-64	SLSC	44	0.7398
20-Aug-23	WTS	SC-65	SLSC	82	4.3482
20-Aug-23	WTS	SC-66	SLSC	62	1.8559
20-Aug-23	WTS	SC-67	SLSC	73	2.8399
20-Aug-23	WTS	SC-68	SLSC	56	1.4178
20-Aug-23	WTS	SC-69	SLSC	53	1.127
20-Aug-23	WTS	SC-70	SLSC	67	2.9832
20-Aug-23	WTS	SC-71	SLSC	60	1.9424
20-Aug-23	WTS	SC-72	SLSC	41	0.6105
20-Aug-23	WTS	SC-73	SLSC	60	1.7969
20-Aug-23	WTS	SC-74	SLSC	56	1.457
20-Aug-23	WTS	SC-75	SLSC	54	1.3272
20-Aug-23	WTS	SC-76	SLSC	49	0.9735
20-Aug-23	WTS	SC-78	SLSC	39	0.4743
20-Aug-23	WTS	SC-79	SLSC	52	1.2888
20-Aug-23	WTS	SC-80	SLSC	55	1.4832
20-Aug-23	WTS	SC-81	SLSC	46	0.8014
20-Aug-23	WTS	SC-82	SLSC	50	1.0642
20-Aug-23	WTS	SC-83	SLSC	32	0.3152
25-Aug-23	WTS	SC-199	SLSC	44	0.6538
25-Aug-23	WTS	SC-200	SLSC	37	0.3718
25-Aug-23	WTS	SC-201	SLSC	41	0.5083
25-Aug-23	WTS	SC-202	SLSC	57	1.3831
25-Aug-23	WTS	SC-203	SLSC	71	2.9431
25-Aug-23	WTS	SC-204	SLSC	28	0.2589

able C-4: Indiv	/idual fish chara	cteristics for lake tro	ut captured thro	1		1	1	able.						
FISH ID	Date	Lake	Net Set	Length (mm)	Weight (g)	Liver weight (g)	Gonad weight (g)	Sex1	Maturity ¹	Gonad condition ¹	Egg Sample Weight (g)	Egg Count	Stomach contents ¹	DELTs and parasites
LT-1	2023-08-21	Lake 1	Gill net 2	505	1360	15.01	14.19	F	1	U	0 10/		Z	EC
														Í
LT-2	2023-08-21	Lake 1	Gill net 2	611	2365	29.66	2.49	М	1	U			UNIDENTIFIED FISH	EC
LT-3	2023-08-21	Lake 1	Gill net 2	480	638	9.57	1.87	F	1	U			RW	EC
LT-4	2023-08-21	Lake 1	Gill net 2	398	741	8.07	0.25	F	1	U			E	EC
LT-5	2023-08-21	Lake 1	Gill net 2	450	1079	12.28	6.61	F	1	U			E	EC
LT-6	2023-08-21	Lake 1	Gill net 2	422	809	8.29	3.12	F	1	U			E	EC
LT-7	2023-08-21	Lake 1	Gill net 2	326	332	3.96	0.18	U		U			6 NS	ļ
LT-8	2023-08-21	Lake 1	Gill net 2	193	80.76	0.9		U	1	U			E	EC
LT-9	2023-08-21	Lake 1	Gill net 2	180	64.33	0.74		U	1	U			E	EC
LT-10	2023-08-21	Lake 1	Gill net 2	184	66.08	0.57		U		U			E	EC
LT-11	2023-08-21	Lake 1	Gill net 2	791	6580	98.28	76.65	F	M	U			RW	EC
LT-12	2023-08-21	Lake 1	Gill net 1	510	1253	10.28	0.61	M		U			E	EC
LT-13	2023-08-21	Lake 1	Gill net 1	435	789	7.38	0.1	U		U			E	EC
LT-14	2023-08-21	Lake 1	Gill net 1	457	1034	7.57	6.65	F		RST			E	EC
LT-15	2023-08-21	Lake 1	Gill net 1	429	958	8.14	23.03	M	M	RST			E	EC
LT-16	2023-08-21	Lake 1	Gill net 1	379	534 1702	5.48	0.8	F		UUU			Z	EC EC
LT-17 LT-18	2023-08-21 2023-08-21	Lake 1 Lake 1	Gill net 1	543 563	1702	19.39 13.42	1.94	M F		RST			E	EC
LT-18 LT-19	2023-08-21	Lake 1 Lake 1	Gill net 1 Gill net 1	586	2102	13.42	49.23	F M	M	RST			E	EC
LT-19 LT-20	2023-08-21	Lake 1	Gill net 1	563	1758	16.5	10.67	F	1	U			E	EC
LT-20 LT-21	2023-08-21	Lake 1 Lake 1	Gill net 1	459	1055	21.26	114.47	F	M	R	68.69	495	Z	EC
LT-21 LT-22	2023-08-21	Lake 1 Lake 1	Gill net 1	454	974	10.36	7.23	F	101	RST	08.03	433	E	EC
LT-23	2023-08-21	Lake 1	Gill net 1	644	2925	27.11	34.25	F	м	RST			E	EC
LT-24	2023-08-21	Lake 1	Gill net 1	360	504	4.88	0.92	F	1	U			E	EC
LT-25	2023-08-21	Lake 1	Gill net 1	602	2249	16.23	18.74	F	M	RST			E	EC
LT-26	2023-08-21	Lake 1	Gill net 1	637	2738	17.39	30.92	M	M	RST			E	EC
LT-27	2023-08-21	Lake 1	Gill net 1	447	865	7.11	4.21	F	1	U			E	EC
LT-28	2023-08-21	Lake 1	Gill net 1	861	8660	118.58	134.39	F	M	RST			LT	EC
													NS AND	
LT-29	2023-08-21	Lake 1	Gill net 1	800	6600	78.6	203	M	M	RST			UNIDENTIFIED FISH	
LT-30	2023-08-21	Lake 1	Gill net 1	629	5920	43.43	55.17	M	м	RST			E	ļ
LT-31	2023-08-21	Lake 1	Gill net 1	774	5570	56.76	69.38	F	м	RST			E	EC
LT-32	2023-08-21	Lake 1	Gill net 1	645	3339	35.26	3.36	M	1	U			E	ļ
LT-33	2023-08-21	Lake 1	Gill net 1	709	4116	51.27	48.5	F	м	RST			E	EC
LT-34	2023-08-19	Mammoth	Gill net 2	396	655	4.99	21.74	Μ	м	RST			<u> </u>	EC
LT-35	2023-08-19	Mammoth	Gill net 2	296	292	2.68	0.25	F		U			Z	
LT-36	2023-08-19	Mammoth	Gill net 2	254	196	2.47	0.17	M		U			E	EC
LT-37	2023-08-19	Mammoth	Gill net 2	243	179	1.53	0.02	U	1	U			Z	EC
LT-38	2023-08-19	Mammoth	Gill net 2	222	111	1.24	0.03	U		U			E	
LT-39	2023-08-19	Mammoth	Gill net 2	187	62.25	0.46	000	U	1	U	57.70	540	E	EC
LT-40	2023-08-19	Mammoth	Gill net 2	876	8430	126.81	993	F	M	R	57.79	512	E	
LT-41	2023-08-19	Mammoth	Gill net 1	564	2085	27.09	22.94	F	M	RST			E	50
LT-42	2023-08-19	Mammoth	Gill net 1	382	550	4.15	0.26	M		U			E	EC
LT-43	2023-08-19	Mammoth	Gill net 1	390	608	3.3	0.39	M		U			1	EC
LT-44 LT-45	2023-08-19 2023-08-19	Mammoth Mammoth	Gill net 1 Gill net 1	393 370	637 562	4.01 4.25	14.73 20.63	M	M	RST RST				EC EC
LT-45 LT-46	2023-08-19	Mammoth	Gill net 1 Gill net 1	370	558	3.13	9.96	F	M	RST			1	EC
LT-46 LT-47	2023-08-19	Mammoth	Gill net 1 Gill net 1	378	558	3.13	9.96	ь М	M	RST			I,Z	EC
LT-47 LT-48	2023-08-19		Gill net 1 Gill net 1	478	584 1144	7.23	0.98	M		U			I,Z E	EC
LT-48 LT-49	2023-08-19	Mammoth Mammoth	Gill net 1 Gill net 1	478	710	4.63	6.99	F		U			E	EC
LI-43			Gill net 1	348	510	3.08	11.85	F M	M	RST			Z	EC
	2022-09-10													, ĽU
LT-50 LT-51	2023-08-19 2023-08-19	Mammoth Mammoth	Gill net 1	550	1504	9.72	10.79	F	1	U			E	EC

able C-4. mun		cteristics for lake trou	it captured thro											
FISH ID	Date	Lake	Net Set	Length (mm)	Weight (g)	Liver weight (g)	Gonad weight (g)	Sex ¹	Maturity ¹	Gonad condition ¹	Egg Sample Weight (g)	Egg Count	Stomach contents ¹	DELTs and parasites
LT-53	2023-08-19	Mammoth	Gill net 1	426	732	4.93	3.35	F	1	U			E	EC
LT-54	2023-08-19	Mammoth	Gill net 1	435	826	6.81	8.55	F	1	U			E	EC
LT-55	2023-08-19	Mammoth	Gill net 1	338	472	2.97	1.75	F	1	U			Z	EC
LT-56	2023-08-19	Mammoth	Gill net 1	355	520	2.94	10.64	М	М	RST			1	EC
LT-57	2023-08-19	Mammoth	Gill net 1	340	484	3.41	2.08	F	1	U			I, 1 SCULPIN	EC
LT-58	2023-08-19	Mammoth	Gill net 1	374	534	3.38	10.64	F	M	RST			Z	EC
LT-59	2023-08-19	Mammoth	Gill net 1	299	258	2.12	0.43	F	1	U			E	EC
LT-60	2023-08-19	Mammoth	Gill net 1	286	290	2.83	0.13	F	· ·	U			Z	EC
LT-61	2023-08-19	Mammoth	Gill net 1	210	96.86	0.93	0.13	F		U			F	EC
LI-01	2023-06-19	IVIdITITIOUT	Gill Het 1	210	90.00	0.95	0.15	Г	'	0			JUVENILE BURBOT	
17.62	2022 08 10	Mananaath	Cill not 1	221	125 77	0.75		U						50
LT-62	2023-08-19	Mammoth	Gill net 1	231	125.77	0.75				U			REMAINS	EC
LT-63	2023-08-19	Mammoth	Gill net 1	146	32.97	0.22		U		U			E	EC
LT-64	2023-08-19	Mammoth	Gill net 1	159	43.99	0.49		U	1	U			E	EC
LT-65	2023-08-21	Lake 8	Gill net 1	464	1025	6.81	21.13	М	M	RST			Z,I	EC
LT-66	2023-08-21	Lake 8	Gill net 1	498	1167	10.34	14.69	F	M	RST			Z,I	EC
LT-67	2023-08-21	Lake 8	Gill net 1	500	1046	8.24	13.75	F	М	RST			Z,I	EC
LT-68	2023-08-21	Lake 8	Gill net 1	407	845	9.55	5.93	F	<u> </u>	U			Z	EC
LT-69	2023-08-21	Lake 8	Gill net 1	405	768	9.36	3.36	F	I	U			Z	EC
LT-70	2023-08-21	Lake 8	Gill net 1	439	893	5.5	23.65	М	М	RST			1 SC	EC
LT-71	2023-08-21	Lake 8	Gill net 1	392	664	6.14	0.45	М	1	U			Z,I	EC
LT-72	2023-08-21	Lake 8	Gill net 1	261	173.18	1.52	0.05	U	1	U			E	EC
LT-73	2023-08-21	Lake 8	Gill net 1	233	127.38	0.66		U	1	U			Z	EC
LT-74	2023-08-21	Lake 8	Gill net 1	241	147.99	1.2	0.31	M	1	U			Z	EC
LT-75	2023-08-21	Lake 8	Gill net 1	190	66.63	0.57	0.07	F		U			Z	
LT-76	2023-08-21	Lake 8	Gill net 1	200	83.45	0.74	0.07	U		U			Z	EC
LT-70	2023-08-21			181	63.62	0.74		U U		U U			Z	EC
		Lake 8	Gill net 1							-				
LT-78	2023-08-21	Lake 8	Gill net 1	188	65.3	0.64		U		U			Z,1	
LT-79	2023-08-21	Lake 8	Gill net 1	178	57.07	0.44		U		U			Z	
LT-80	2023-08-21	Lake 8	Gill net 1	179	60.3	0.7		U		U			Z	EC
LT-81	2023-08-21	Lake 8	Gill net 2	486	1170	7.34	23.46	М	М	RST			I	
LT-82	2023-08-21	Lake 8	Gill net 2	501	1416	14.55	23.25	F	м	RST			Z,I	
LT-83	2023-08-21	Lake 8	Gill net 2	439	977	7.85	6.62	F	1	U			Z,I	EC
LT-84	2023-08-21	Lake 8	Gill net 2	496	1233	11.69	15.83	F	M	RST			Z,I	EC
LT-85	2023-08-21	Lake 8	Gill net 2	423	880	12.7	2.83	F	1	U			Z,I	EC
LT-86	2023-08-21	Lake 8	Gill net 2	454	1052	10.02	1.27	М	1	U			Z,I	1
LT-87	2023-08-21	Lake 8	Gill net 2	461	1070	8.72	24.46	М	M	RST			Z,I	EC
LT-88	2023-08-21	Lake 8	Gill net 2	479	1170	9.63	28.97	М	М	RST			Z,I	
LT-89	2023-08-21	Lake 8	Gill net 2	487	1095	9.93	14.42	F	М	RST			Z,I	EC
LT-90	2023-08-21	Laka 9	Cill not 2	512	1510	12.75	16.15	F		RST			LAKE TROUT AND UNIDENTIFIED	50
		Lake 8	Gill net 2			13.75			M	U			SMALL FISH	EC
LT-91	2023-08-21	Lake 8	Gill net 2	377	565	8.54	0.41	M	· · ·	-			Z	EC
LT-92	2023-08-21	Lake 8	Gill net 2	520	1304	12.54	7.84	F	M	RST			Z	EC
LT-93	2023-08-21	Lake 8	Gill net 2	240	140.27	1.31		U	1	U			E	
LT-94	2023-08-21	Lake 8	Gill net 2	190	71.93	0.73		U		U			Z	
LT-95	2023-08-21	Lake 8	Gill net 2	134	23.61	0.27		U		U			E	
LT-96	2023-08-24	Whale Tail South	Gill net 2	635	2334	24.49	18.81	F	M	RST			E	
LT-97	2023-08-24	Whale Tail South	Gill net 2	440	962	14.37	118.12	F	M	R	40.31	407	E	EC
LT-98	2023-08-24	Whale Tail South	Gill net 2	445	1058	9.78	41.87	М	м	RST			Z	EC
LT-99	2023-08-24	Whale Tail South	Gill net 2	393	762	7.08	12.34	М	м	RST	1		Z	EC
LT-100	2023-08-24	Whale Tail South	Gill net 2	443	1035	9.31	28.53	М	м	RST			Z	EC
LT-101	2023-08-24	Whale Tail South	Gill net 2	425	1035	18.66	118.61	F	M	R	39.98	337	FINGERNAIL CLAMS AND Z	EC
								м						EC
LT-102	2023-08-24	Whale Tail South	Gill net 2	424	897	9.14	25.13	М	М	RST			Z	

		cteristics for lake trou			Weight	1	Gonad weight				Egg Sample			DELTs and
FISH ID	Date	Lake	Net Set	(mm)	(g)	(g)	(g)	Sex ¹	Maturity ¹	Gonad condition ¹	Weight (g)	Egg Count	Stomach contents ¹	parasites
													FINGERNAIL CLAMS	
LT-103	2023-08-24	Whale Tail South	Gill net 2	456	1143	12.04	30.11	М	м	RST			AND Z	EC
LT-104	2023-08-24	Whale Tail South	Gill net 2	403	753	7.09	11.58	М	M	RST			Z	EC
LT-105	2023-08-24	Whale Tail South	Gill net 2	350	486	4.75	0.86	F	1	U			E	
17.400	2022.02.24		C''' 1.2		400		0.55	-						50
LT-106	2023-08-24	Whale Tail South	Gill net 2	333	430	3.49	0.55	F		U			Z AND 1 NINESPINE	EC
LT-107	2023-08-24	Whale Tail South	Gill net 2	267	251	3.14	0.25	F	<u> </u>	U			Z	EC
LT-108	2023-08-24	Whale Tail South	Gill net 2	282	264	2.28	0.09	M		U			E	EC
LT-109	2023-08-24	Whale Tail South	Gill net 2	264	240	3	0.02	M	1	U			Z	
LT-110	2023-08-24	Whale Tail South	Gill net 2	250	192	1.89	0.21	F		U			Z	EC
LT-111	2023-08-24	Whale Tail South	Gill net 2	241	146	0.94		U	1	U			E	EC
LT-112	2023-08-24	Whale Tail South	Gill net 2	131	20.6	0.22	100.00	U		U			E	EC
LT-113	2023-08-24	Whale Tail South	Gill net 2	750	5130	55.1	126.62	M	M	R			E	EC
LT-114	2023-08-24	Whale Tail South	Gill net 1	469	1057	9.57	3.41	F	1	U			E	EC
LT-115	2023-08-24	Whale Tail South	Gill net 1	420	943	8.2	23.52	М	м	R			Z	EC
LT-116	2023-08-24	Whale Tail South	Gill net 1	392	689	5.32	3.63	F	1	U			Z	EC
LT-117	2023-08-24	Whale Tail South	Gill net 1	561	2245	35.63	306	F	м	R	51.6	388	E	
													UNIDENTIFIED FISH	
LT-118	2023-08-24	Whale Tail South	Gill net 1	426	883	5.83	24.87	M	M	RST			EMAINS	EC
LT-119	2023-08-24	Whale Tail South	Gill net 1	347	498	3.74	0.88	F	1	U			E	EC
LT-120	2023-08-24	Whale Tail South	Gill net 1	435	975	11.66	136.82	F	м	R	50.37	514	I	EC
LT-121	2023-08-24	Whale Tail South	Gill net 1	385	569	4.09	0.45	М	1	U			1 NINESPINE	EC
LT-122	2023-08-24	Whale Tail South	Gill net 1	243	155	1.78		U	1	U			E	EC
LT-123	2023-08-24	Whale Tail South	Gill net 1	214	104	1.33		U	1	U			I	EC
LT-124	2023-08-24	Whale Tail South	Gill net 1	255	186	1.82		U	I	U			Z	EC
LT-125	2023-08-24	Whale Tail South	Gill net 1	246	149	1.36		U	I	U			E	EC
LT-126	2023-08-24	Whale Tail South	Gill net 1	221	139	2	0.18	F	1	U			Z	
LT-127	2023-08-24	Whale Tail South	Gill net 1	236	169	1.68		U	1	U			Z	
LT-128	2023-08-24	Whale Tail South	Gill net 1	878	8760	57.16	286	М	М	RST			E	EC
LT-129	2023-08-24	Whale Tail South	Gill net 1	731	5210	61.91	70.04	F	М	RST			E	EC
LT-130	2023-08-24	Whale Tail South	Gill net 1	305	318	2.96		U	1	U			Z	EC
LT-131	2023-08-24	Whale Tail South	Gill net 1	284	256	2.29	0.36	М	1 1	U			Z	EC
LT-132	2023-08-24	Whale Tail South	Gill net 1	282	218	2.28		U	1	U			Z	EC
													UNIDENTIFIED FISH	
LT-133	2023-08-24	Whale Tail South	Gill net 1	241	175	2.06		U		U			REMAINS AND Z	EC
LT-134	2023-08-24	Whale Tail South	Gill net 1	212	108	1.26		U	1	U			Z	
LT-135	2023-08-24	Whale Tail South	Gill net 1	225	117	1.26		U	1	U			Z	EC
LT-136	2023-08-24	Whale Tail South	Gill net 1	206	108	1.58		U	1	U			Z	EC
LT-137	2023-08-24	Whale Tail South	Gill net 1	177	64	0.55		U	1	U			Z,I	EC
LT-138	2023-08-24	Whale Tail South	Gill net 1	193	80	0.72		U	1	U			E	
LT-139	2023-08-24	Whale Tail South	Gill net 1	193	76	0.57		U	1	U			E	EC
LT-140	2023-08-24	Whale Tail South	Gill net 1	172	57	0.46		U	1	U			3 NINESPINE	EC
LT-141	2023-08-25	A-20	Gill net 1	358	530	5.99	2.21	F	1	U			Z	EC
LT-142	2023-08-25	A-20	Gill net 1	344	434	4.5	0.76	F	1	U			2 NINESPINE	EC
LT-143	2023-08-25	A-20	Gill net 1	370	552	4.3	1.69	F	1	U			E	
LT-144	2023-08-25	A-20	Gill net 1	375	631	6.26	4.91	F	1	U			E	EC
LT-145	2023-08-25	A-20	Gill net 1	473	1194	9.79	19.03	М	м	RST			E	EC
LT-146	2023-08-25	A-20	Gill net 1	559	1852	20.47	38.57	М	М	R			E	EC
LT-147	2023-08-25	A-20	Gill net 1	372	583	5.32	0.36	М	1	U			Z	
.=								_						
LT-148	2023-08-25	A-20	Gill net 1	470	1305	18.19	9.92	F	1	U			1 ROUND WHITEFISH	EC
LT-149	2023-08-25	A-20	Gill net 1	467	1178	7.19	21.01	М	м	RST			E	EC
LT-150	2023-08-25	A-20	Gill net 1	425	785	5.18	4.04	F	1	U			E	EC
LT-151	2023-08-25	A-20	Gill net 1	425	802	5.7	0.8	М	1	U			1 NINESPINE	EC

FISH ID	Date	Lake	Net Set	Length	Weight	Liver weight	Gonad weight	t Sex ¹	Maturity ¹	Gonad condition ¹	Egg Sample Weight (g)	Egg Count	Stomach contents ¹	DELTs and parasites
				(mm)	(g)	(g)	(g)							
LT-152	2023-08-25	A-20	Gill net 1	323	418	3.88	0.25	М	1	U			Z	EC
LT-153	2023-08-25	A-20	Gill net 1	375	611	5.49	3.7	F	I	U			E	EC
LT-154	2023-08-25	A-20	Gill net 1	413	832	5.56	20.24	Μ	M	R			E	EC
													UNIDENTIFIED FISH	1
LT-155	2023-08-25	A-20	Gill net 1	400	737	5.87	13.45	F	1	U			REMAINS	EC
LT-156	2023-08-25	A-20	Gill net 1	415	839	5.65	20.36	Μ	M	R			Z	EC
LT-157	2023-08-25	A-20	Gill net 1	337	468	3.02	0.15	Μ	I	U			Z	EC
LT-158	2023-08-25	A-20	Gill net 1	238	155	1.72	0.28	F	1	U			E	EC
LT-159	2023-08-25	A-20	Gill net 1	256	126	1.06		U	1	U			E	EC
LT-160	2023-08-25	A-20	Gill net 1	236	142	1.07		U	1	U			UNIDENTIFIED FISH REMAINS	
LT-161	2023-08-25	A-20	Gill net 1	749	4731	36.73	41.99	М	м	RST			E	EC
LT-162	2023-08-25	A-20	Gill net 1	652	3928	39.46	122.45	М	м	R			E	EC
LT-163	2023-08-25	A-20	Gill net 1	647	2711	31.97	43.15	М	М	R			E	
LT-164	2023-08-25	A-20	Gill net 2	494	1286	13.77	12.36	F	I	U			E	
LT-165	2023-08-25	A-20	Gill net 2	507	1362	19.13	1.06	М	I	U			1 ROUND WHITEFISH	EC
LT-166	2023-08-25	A-20	Gill net 2	415	719	6.44	12.49	M	M	R			E	
LT-167	2023-08-25	A-20	Gill net 2	261	182	1.36		U	1	U			E	EC
Codes:								F = female M = male U = unidentified	l = immature M = mature	U = unidentified RST = resting R = ripe			Z = zooplankton I = invertebrates E = empty RW = round whitefish NS = ninespine stickleback LT = lake trout	